

M...

MCA, MCS, MQA, MD□KS, MDFQA 0.5 Nm ... 1100 Nm

Asynchronous servo motors / synchronous servo motors

Operating Instructions

ΕN

1	About t	his documentation	5							
	1.1	Document history								
	1.2	Conventions used								
	1.3	Terminology used	6							
	1.4	Notes used	7							
2	Safety i	nstructions	8							
	2.1	General safety instructions for drive components								
	2.2	Application as directed	9							
	2.3	Foreseeable misuse	10							
	2.4	Residual hazards	10							
3	Product	description	12							
	3.1	Identification								
		3.1.1 Nameplate	13							
		3.1.2 Product key	15							
4	Technic	al data	19							
	4.1	General data and operating conditions	19							
		4.1.1 Setting the switching frequency to the rated motor data	20							
5	Mechanical installation									
	5.1	Important notes								
	5.2	Preparation								
	5.3	Assembly of built-on accessories								
		5.3.1 Installation	22							
	5.4	Holding brake (option)	22							
		5.4.1 Permanent magnet holding brakes	24							
		5.4.2 Spring-applied holding brakes	26							
6	Electrica	al installation	28							
	6.1	Important notes								
	6.2	Wiring according to EMC								
	6.3	Plug connectors	29							
		6.3.1 Power connections / holding brake	29							
		6.3.2 Holding brake	30							
		6.3.3 Fan	30							
		6.3.4 Feedback system	31							
	6.4	Terminal box	32							
		6.4.1 Power connections	33							
		6.4.2 Holding brake DC 205 V - connected via rectifier (optionl)	33							
		6.4.3 Holding brake DC 24 V (optional)	33							
		6.4.4 Fan	34							
		6.4.5 Feedback system	35							

i Contents

8	Commissioning and operation									
	8.1	Important notes	37							
	8.2	Before switching on	37							
	8.3	Functional test	38							
	8.4	During operation	38							
9	Maintenance/repair									
	9.1	Important notes	39							
	9.2	Maintenance intervals								
		9.2.1 Motor	39							
		9.2.2 Safety encoder	39							
		9.2.3 Holding brake	40							
	9.3	Maintenance operations								
		9.3.1 Blower	40							
		9.3.2 Fan with dust protection filter	41							
		9.3.3 Motors with bearing relubricating devices	41							
		9.3.4 Motor plug connection assignment	42							
		9.3.5 Power connection for plug-in connector at the cable end	42							
		9.3.6 Plug-in connector at the cable end	43							
	9.4	Repair	44							
10	Troubl	eshooting and fault elimination	45							

Contents

- The present operating instructions are intended for safe working on and with the motors. They contain safety instructions that must be observed.
- All personnel working on and with the motors must have the operating instructions available during work and observe the information and notes relevant for them.
- The operating instructions must always be complete and in a perfectly readable state.

If the information and notes provided in this documentation do not meet your requirements, please refer to the controller and/or gearbox documentation.

Tip!

Information and auxiliary devices related to the Lenze products can be found in the download area at http://www.Lenze.com

Validity

This documentation is valid for servo motors:

Туре	Designation		
MCS	Synchronous servo motors		
MCA			
MQA	Asynchronous servo motors		
MDFQA			
MD□KS	Synchronous servo motors		

Target group

This documentation is directed at qualified skilled personnel according to IEC 60364.

Qualified skilled personnel are persons who have the required qualifications to carry out all activities involved in installing, mounting, commissioning, and operating the product.

1 About this documentation

Document history

1.1 Document history

Material number	Versior	ı		Description		
13302706	1.0	07/2009	TD09	First edition of the operating instructions, separate from three-phase AC motors		
13340243	2.0	06/2010	TD09	Complete revision		
13459473	3.0	01/2014	TD09			

1.2 Conventions used

This documentation uses the following conventions to distinguish different types of information:

Type of information	Identification	Examples/notes
Spelling of numbers		
Decimal separator	Point	In general, the decimal point is used.
lcons		101 Instance. 1234.30
Page reference		Reference to another page with additional information
		For instance: 🛄 16 = see page 16
Wildcard		Wildcard for options, selection data

1.3 Terminology used

Term	In the following text used for
Motor	Servo motors in the versions according to product key, see page 15 to page 17.
Controllers	Any servo inverter Any frequency inverter
Drive system	Drive systems with servo motors and other Lenze drive components

Notes used

1.4 Notes used

The following pictographs and signal words are used in this documentation to indicate dangers and important information:

Safety instructions

Structure of safety instructions:

Danger!

(characterises the type and severity of danger)

Note

(describes the danger and gives information about how to prevent dangerous situations)

Pictograpl	n and signal word	Meaning
	Danger!	Danger of personal injury through dangerous electrical voltage. Reference to an imminent danger that may result in death or serious personal injury if the corresponding measures are not taken.
	Danger!	Danger of personal injury through a general source of danger. Reference to an imminent danger that may result in death or serious personal injury if the corresponding measures are not taken.
STOP	Stop!	Danger of property damage. Reference to a possible danger that may result in property damage if the corresponding measures are not taken.

Application notes

Pictograph	and signal word	Meaning
i	Note!	Important note to ensure troublefree operation
-`ੑੑੵੑੑ੶	Tip!	Useful tip for simple handling
		Reference to another documentation

2 Safety instructions

General safety instructions for drive components

2.1 General safety instructions for drive components

Danger!

Disregarding the following basic safety measures may lead to severe personal injury and damage to material assets!

Note!

Safety-related parameters of safety encoders used can be obtained from the SISTEMA database, the Lenze AKB (Application Knowledge Base) or the data sheet of the encoder manufacturer.

- Lenze drive and automation components ...
 - ... must only be used for the intended purpose.
 - ... must never be operated if damaged.
 - ... must never be subjected to technical modifications.
 - ... must never be operated unless completely assembled.
 - ... must never be operated without the covers/guards.
 - ... can depending on their degree of protection have live, movable or rotating parts during or after operation. Surfaces can be hot.
- Transport and storage in a dry, low-vibration environment without aggressive atmosphere; preferably in the packaging provided by the manufacturer.
 - Protect against dust and impacts.
 - Observe climatic conditions according to the technical data.
- Lenze drive and automation components ...
 - ... must only be used as intended.
 - ... must never be commissioned despite noticeable damage.
 - ... must never be technically changed.
 - ... must never be commissioned in an incompletely mounted state.
 - ... must never be operated without the required covers.
 - ... may have live, moving or rotary parts during and after operation corresponding to their type of protection. Surfaces may be hot.
 - ... must not be operated with large vibrations.
 - ... must not be operated in the frequency range of a plant or the drive system.
- All specifications of the corresponding enclosed documentation must be observed.

This is vital for a safe and trouble-free operation and for achieving the specified product features.

Safety instructions 2

.

Application as directed

• Only qualified skilled personnel are permitted to work with or on Lenze drive and automation components.

According to IEC 60364 or CENELEC HD 384, these are persons ...

 \ldots who are familiar with the installation, assembly, commissioning and operation of the product,

... possess the appropriate qualifications for their work,

... and are acquainted with and can apply all the accident prevent regulations, directives and laws applicable at the place of use.

2.2 Application as directed

Low-voltage machines are not household appliances, but are intended as components that are only applied for re-use for industrial or professional purposes in terms of IEC/EN 61000-3-2.

They meet the requirements of the Low-Voltage Directive 2006/95/EC and the harmonised standards of the IEC/EN 60034 series.

It is permissible to use low-voltage machines with IP23 protection or less outdoors only if special protective measures are taken.

Do not use the integrated brakes as fail-safe brakes. It cannot be ruled out that the braking torque will be reduced due to disruptive factors that cannot be influenced.

- Drives
 - ... must only be operated under the operating conditions and power limits specified in this documentation.
 - -... comply with the protection requirements of the EC Low-Voltage Directive.

Note!

Generally, all products this documentation is valid for meet the requirements of the Low-Voltage Directive 2006/95/EC. Products that do not meet the minimum efficiencies of the EU Directive 640/2009 (and hence the ErP Directive 2009/125/EC), will not be CE-compliant as of 16th June 2011 and thus do not receive a CE designation. In that case, the product may only be used outside the EEA.

Any other use shall be deemed inappropriate!

2 Safety instructions

Foreseeable misuse

2.3 Foreseeable misuse

.

- Do not operate the motors
 - ... in explosion-protected areas
 - -... in aggressive environments (acid, gas, vapour, dust, oil)
 - ... in water
 - -... in radiation environments

Note!

Increased surface and corrosion protection can be achieved by using adapted coating systems.

2.4 Residual hazards

Protection of persons

- The motor surfaces can become very hot. Danger of burns when touching!
 Provide protection against accidental contact, if necessary.
- Highfrequency voltages can be capacitively transferred to the motor housing through the inverter supply.
 - Earth motor housing carefully.
- Danger of unintentional starting or electrical shocks
 - Connections must only be made when the equipment is deenergised and the motor is at standstill.
 - Installed brakes are no fail-safe brakes.

Safety instructions 2 Residual hazards

Residual ha

Motor protection

- Installed thermal detectors are **no full protection** for the machine.
 - If required, limit the maximum current, parameterise the controller such that it will be switched off after some seconds of operation with I > I_N , especially if there is the danger of blocking.
 - Installed overload protection does not prevent an overload under any conditions.
- Installed brakes are **no fail-safe brakes**.
 - The torque can be reduced due to disruptive factors that cannot be influenced,
 e.g. by ingressing oil due to a defect shaft sealing ring on the A side.
- Fuses are no motor protection.
 - Use current-dependent motor protection switches at average operating frequency.
 - Use installed thermal detectors at high operating frequency.
- Too high torques cause a fraction of the motor shaft.
 - The maximum torques according to catalogue must not be exceeded.
- Lateral forces from the motor shaft may occur.
 - Align shafts of motor and driving machine exactly to each other.
- If deviations from normal operation occur, e.g. increased temperature, noise, vibration, determine the cause and, if necessary, contact the manufacturer. If in doubt, switch off the motor.

Fire protection

- Fire hazard
 - Prevent contact with flammable substances.

3 Product description

Identification

3.1 Identification

Types MC., MQA

Type MD...

.

Product description 3 Identification Nameplate

.

3.1.1 Nameplate

ΕN

3 Product description

_

- - - -

Identification Nameplate

No.	Explanation
1	Manufacturer
2	Motor type
3	Lenze motor type
4	Rated voltage U _r [V]
5	Rated current Ir [A]
6	Maximum current I _{max} [A]
7	Labelling of encoder (example: IG2048 - 5V - T; explanation 🛄 18) / resolver correction value C 416
8	Feedback/encoder or resolver data; brake data (if available): AC/DC brake voltage
	Current
	Braking torque
9	Motor no.
10	Enclosure
11	Temperature class
12	Permissible ambient temperature range
13	8-digit identification number + 16-digit serial number
14	General motor standard
15	Circuit of the winding
16	Motor protection/thermal sensor
17	Selection number for operation on servo inverters (enter the provided selection number in C0086 to automatically optimise the control mode)
18	Rated speed nr [rpm]
19	Rated power P _r [HP]
20	Rated power Pr [kW]
21	Continuous standstill torque M ₀ [Nm]
22	Rated torque M _r [Nm]
23	Rated power factor $\cos \phi$
24	Rated frequency f _r [Hz]
25	Valid conformities, approvals and certificates: CE identification/standard
	UL mark with UL file number

_

Exam	ple: MCA					Exam	ple: MCS				
Lenze		Hans 3185 GERA	Hans-Lenze-Straße 1 31855 Aerzen Germany CRUUS GERMANY GERMANY				Lenz	Hans-Le 31855 / GERMA	enze-Straße 1 Aerzen NY	Made in Germany C	
	3~MOT	Тур МС	21X25-RSOP1-A	OP1-A38R-ST5SOON-ROSU			3~MOT Typ MCS 14H32-SRMP1-B24N-ST6500N-R0SU			0SU	
	390 V~	6.4 kV	V 24.6 Nm	85 Hz	2490 r/min		295 V~	4.7 kW	14.0 Nm	215 Hz	3225 r/min
	13.5 A	8.58 HF	Mo 39 Nm	cosφ 0.83	C86: 1378		11.9 A	HP	Mo 21.0 Nm	U _{in} 246 V	C86: 1331
		IP 54	I. CL. F	Ta 40°C	КТҮ		max. 45.5 A	IP 65	I. CL. F	Ta 40°C	KTY + 2PTC
	Geber Feedback RS12345678 C416: Id.Nr.				1467		Geber Feedback AM	1024-8V-H (C416:	Id.Nr. 15227	910
	Brake 24 V- 1.46 A 80.0 Nm						Bremse Brake 24V	/- 0.87 A	18.0 Nm		
SN 15061467100000170712345							SN 1522791	100000170712	345		
					MT-MCA-002.iso/dms						MT-MCS-002.iso/dms

Example: MDFQA

Lonz	Hans-Lenze-St		raße 1 Made in	Тур	MDFQAB	160-32	
	GERMAN	IY	Germany		Δ	Y	
3~МОТ	EN60034	CE	Ta 40°C	Hz	31	18	
I. CL. F	IP 23s		ΚΤΥ/ΤΚΟ	kW	40.5	22.6	
Br. 480 V	0.18 A	150 N	m				
Geber	IG2048-5V-T			r/min	890	498	
MAT-NR. 13	148476			v	355	360	
AUF-NR. 000	000123			А	87.0	51.5	
MOT-NR: 13	1484761000	cos φ	0.86	0.87			
		C86	1302	1301			
	MT-MDFQA-003.is						

Product description 3 Identification Product key

3.1.2 Product key

Servo motors MCA, MCS, MQA

Legend for product key

🔺 Туре										
С	Compact servo motors (if required, with axial ventilation)	Q	Radially ventilated motor							
B Design	■ Design									
Α	Asynchronous	S	Synchronous							
© Motor frame size, motor length, speed										
06	Square dimension 62 mm	19	Square dimension 192 mm							
09	Square dimension 89 mm	20	Square dimension 200 mm							
10	Square dimension 102 mm	21	Square dimension 214 mm							
12	Square dimension 116 mm	22	Square dimension 220 mm							
13	Square dimension 130 mm	26	Square dimension 260 mm							
14	Square dimension 142 mm	CX	Overall length							
17	Square dimension 165 mm	XX	Speed in 100 min ⁻¹							
D Speed sensor, angle sensor										
RSO	Resolver p=1	RVO	Resolver p=1 "safety"							
SKM	Multiturn absolute value encoder with sin/cos signals, Hiperface	SVS	Singleturn absolute value encoder with sin/cos signals, Hiperface "safety"							
SRS	Singleturn absolute value encoder with sin/cos signals, Hiperface	SVM	Multiturn absolute value encoder with sin/cos signals, Hiperface "safety"							
SRM	Multiturn absolute value encoder with sin/cos signals, Hiperface									
ECN	Singleturn absolute value encoder with sin/cos signals, EnDat									
EQN	Multiturn absolute value encoder with sin/cos signals, EnDat									
EQI	Multiturn absolute value encoder with sin/cos signals, EnDat									
CXX	Incremental encoder TTL with commutation signals UVW	S1S	Incremental encoder with safety function							
TXX	Incremental encoder TTL	SXX	Incremental encoder sin/cos (IS2048)							
HXX	Incremental HTL encoder	NNO	No encoder							
E Brake										
BO	Without brake	FH	Spring-applied brake 230V AC, reinforced							
F1	Spring-applied brake 24V DC	P1	PM brake 24V DC							
F2	Spring-applied brake 24V DC, reinforced	P2	PM brake 24V DC, reinforced							
F5	Spring-applied brake 205V DC	P5	PM brake 205V DC							
F6	Spring-applied brake 205V DC, reinforced	P6	PM brake 205V-DC, reinforced							
FG	Spring-applied brake 230V AC									

Product key

E Design,	, shaft, concentricity/vibrational severity/direct ge	arbox at	tachment							
Design	· · · · · ·									
A	Standard flange form A/FF with through hole, cyl. shaft without keyway									
В	Standard flange form A/FF with through hole, cyl. shaft with keyway									
C	Standard flange form C/FT with threaded holes, cvl. shaft without keyway									
N	Standard flange form C/FT with threaded holes, cyl. shaft with keyway (standard attachment)									
F	Same as version A except that flange is large V Same as version N except that flange is large									
G	Same as version B except that flange is large	0	Without flange and without keyway							
U	Same as version C except that flange is large	Р	Without flange and with keyway							
Shaft										
11	Shaft 11x23 (MCS06)	24	Shaft 24x50 (MCS14; MCA14, 17)							
14	Shaft 14x30 (MCS09; MCA 10)	28	Shaft 28x60 (MCS19; MCA19)							
19	Shaft 19x40 (MCS12; MCA13)	38	Shaft 38x80 (MCA21)							
Concentricity	y/vibrational severity/direct gearbox attachment									
N or R	Concentricity/vibrational severity									
ZOX	Direct gearbox attachment: Motor without pinion for mounting tapered hollow shaft	on open ge	arbox with pinion; flange for direct gearbox attachment without intermediate cover, with							
YOX	Direct gearbox attachment: Motor without pinion for mounting tapered hollow shaft	on open ge	arbox with pinion; flange for direct gearbox attachment with intermediate cover, with							
G Electric	al connection, enclosure, cooling, load flywheel									
Electrical cor	nnection									
ST	Separate circular connectors for power/brake_encoder/thermal	detector fa	n							
50	Shared rectangular connector for power, encoder	actector, ra								
KK	Senarate terminal hoves for nower/have encoder/thermal detector/fan									
KG	Separate terminal boxes for power/brake, blower circular conne	tors for end	oder, thermal detector							
KS	Terminal box for power+brake: circular connector for encoder ar	d thermal c	letector: circular connector for blower							
SK	Circular connector for power+brake: circular connector for encode	ler+thermal	detector: terminal box for fan							
Enclosure										
2	IP23	6	IP65 with shaft sealing ring							
5	IP54 without shaft sealing ring (except for direct mounting on g	-arbox)								
A	IP64 (A-flange, without shaft sealing ring) / IP65	,								
B	IP54 with shaft sealing ring (A-bearing oil-tight)									
<u> </u>	IP54 with shaft sealing ring double lin (A bearing dust-tight)									
	IP65 with double-lin shaft sealing ring									
Cooling	n os with double hp shurt scaling hing									
500	Self cooling/without fan	F10	Blower 230V: AC: 1N							
	Blower 230V: AC: 1N: filter	F30	Blower 400V: AC: 3N							
F3F	Blower 400V: AC: 3N: filter	F50	Blower 115V: AC: 1N							
FWO	Blower 480V: AC: 3N	FWF	Blower 480V: AC: 3N: filter							
Load flywhee			blower 4000, Ac, SH, Inter							
N	Without additional load flywbeel	1	With additional mass inertia							
H Motor	protection, electron. nameplate, color/specificatio	n, approv	/al							
Temperature	e protection									
В	NC thermal contact	R	KTY sensor							
E	KTY sensor; electronic nameplate									
Electronic na	ameplate									
0	Standard nameplate	2	Second nameplate supplied loose							
1	Standard nameplate + electronic nameplate 3 Second nameplate supplied loose + electronic nameplate									
Colour/speci	ification									
S	Colour: black	U	Specification - UL design and CSA design, approval							
		R								
		ĸ	specification - OL design, approval 🕰							
🖽 Miscella	aneous									

.....

Product description 3 Identification

Product key

Servo motors MD

Legend for product key

А Туре	
D	Three-phase AC current
B Cooli	ng method, ventilation
F	Forced ventilated
S	Natural ventilation (cooling by convection and radiation)
C Desig	n, housing
К	Compact servo motor with square housing and cooling ribs
Q	IP23 servo motor with square housing
D Mach	ine type
А	Asynchronous machine
S	Synchronous machine
E Built-	on accessories
AG	Absolute value encoder
BA	Brake and sin-cos absolute value encoder or SSI absolute value encoder
BI	Brake, incremental encoder
BS	Brake and resolver
BR	Brake, resolver
IG	Incremental encoder
RS	Resolver
RV	Resolver "safety"
E Fram	e size
036; 056	5; 071; 100, 112, 132, 160
G Overa	all length
0;1;2;3	3; 4
H Num	ber of pole pairs
1, 2; 3	

3 Product description

Identification Product key

.

Feedback system

Resolver/encoder	
A	
B	
D	

Legend for the product key

A	Туре		
	RS	Resolver	
	RV	Resolver "safety"	
	IG	Incremental encoder	
	IK	Incremental encoder with commutation signal	
	SFC	Singleturn absolute value encoder	
	AM	Multiturn absolute value encoder	
В	Number		
	1	2-pole resolver for three-phase AC motors	
	2, 3, 4	Number of pole pairs for resolvers	
	32, 128, 512,	Number of steps / increments per revolution	
	1024, 2048,		
C	Voltage		
	5 V, 8 V, 15 V,	Medium supply voltage	
	24 V,		
D	Interface or sign	nal level	
	Standard		
	Т	TTL	
	Н	HTL (for incremental encoders)	
	Н	Hiperface (for absolute value encoders)	
	E	EnDat	
	S	sin/cos 1 V _{ss}	
	for safety funct	ion	Safety integration level (SIL)
	U	TTL	
	К	HTL (for incremental encoders)	
	К	Hiperface (for absolute value encoders)	1; 2; 3; 4
	F	EnDat	
	V	sin/cos 1 V _{ss}	

Example of a complete encoder name:

AS1024-8V-K2 = Singleturn absolute value encoder with safety function; 1024 periods per revolution; 8V supply voltage; Hiperface interface; safety integration level SIL2

1

Note!

If feedback systems for safety functions are used, the manufacturer's documentation must be observed!

4

4.1 General data and operating conditions

General data

Conformity				
CE 2006/95/EC Low-Voltage Directive				
Approvals				
UL ANSI/UL 1004-1 Rotating Electrical Machines		Rotating Electrical Machines		
	ANSI/UL 1004-6	Servo and Stepper Motors		
CSA	CSA-C22.2 No. 100	Motors and Generators		

_ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Protection of persons and devices							
Enclosure		See nameplate					
		Degrees of protection only apply to horizontal installation					
		All unused connectors must be closed with protection covers or blanking plugs.					
Temperature class	F (155 °C) IEC 60034	Exceedance of the temperature limit weakens or destroys the insulation					
Permissible voltage		According to limiting curve A of the pulse voltage from IEC / TS 60034-25 (image 14)					
EMC							
Noise emission IEC/EN 61800-3		Depending on the controller, see documentation for the					
Noise immunity		controller.					

Operating conditions

Ambient conditions Climatic							
Transport	IEC/EN 60721-3-2	2K3 (-20 °C +70 °C)					
Storage	IEC/EN 60721-3-1	1K3 (-20 °C +60 °C)	< 3 months				
		1K3 (-20 °C +40 °C)	> 3 months				
Operation	IEC/EN 60721-3-3	3K3 (-20 °C +40 °C)	Without brake				
		3K3 (-10 °C +40 °C)	With brake				
		3K3 (-15 °C +40 °C)	with blower				
		> +40 °C	with power reduction, see catalogue				
Site altitude		< 1000 m amsl - without power reduction > 1000 m amsl < 4000m amsl with power reduction, see catalogue					
Humidity		Relative humidity \leq 85 %, without condensation					
Electrical							
The motor connection	type depends on the	controller					
Length of the motor	cable	See inverter instructions					
Length of cable for s	peed feedback						
Mechanical							
	IEC/EN60721-3-3	3M6					

4 Technical data

General data and operating conditions Setting the switching frequency to the rated motor data

4.1.1 Setting the switching frequency to the rated motor data

The rated data are valid for operation on an inverter with a switching frequency of at least 8 kHz. If operated at a switching frequency of f_{ch} =4 kHz, the following consequences must be observed.

Motor type	Consequences
MDFQA 160	 At f_{ch} = 4 kHz, the motor continuously reaches only approx. 95 % of its rated torque. Strongly increased noise emission
MQA 20, 22, 26 MCA 20, 22, 26	 At f_{ch} = 4 kHz, the motor continuously reaches only approx. 95 % of its rated torque. Increased noise emission
MCS MCA 10, 13, 14, 17, 19, 21 MD□KS	 All published rated data remain valid if f_{ch} = 4 kHz.

5.1 Important notes

Danger!

Some of the motors mounted to the gearboxes are equipped with transport aids. They are **only** intended for the mounting/dismounting of the motor to the gearbox and must **not** be used for the entire geared motor!

- Only move the drive with means of transport or hoists that have sufficient load-bearing capacity.
- Ensure safe fixing.
- Avoid shocks!

5.2 Preparation

Remove the corrosion protection from the shaft ends and flanges. If necessary, remove dirt using standard cleaning solvents.

Stop!

Bearings or seals must not come into contact with the solvent - material damages.

After a long storage period (> 1 year) you have to check whether moisture has entered the motor. For this purpose, measure the insulation resistance (measuring voltage 500 V_{DC}). In case of values $\leq 1 k\Omega$ per volt of rated voltage, dry the winding.

5.3 Assembly of built-on accessories

Follow the instructions below carefully. Please note that, in the event of impermissible alteration or modification of the motor, you will lose all entitlements to make claims under warranty and to benefit from product liability obligations.

- Mount the transmission elements:
 - Shocks and impacts must be avoided! They could destroy the motor.
 - Always use the centre bore in the motor shaft (in accordance with DIN 332, design D) for mounting.
 - Tolerances of the shaft ends: $\leq \emptyset$ 50 mm: ISO k6, > \emptyset 50 mm: ISO m6.
- Only use an extractor for the disassembly.
- When using belts for torque/power transmission:
 - Tension the belts in a controlled manner.
 - Provide protection against accidental contact! During operation, surface temperatures of up to 140°C are possible.

5 Mechanical installation

Holding brake (option) Installation

5.3.1 Installation

Important notes

- The mounting surface must be dimensioned for the design, weight and torque of the motor.
- The foot and flange faces must rest flat on the mounting surface.
 - Incorrect motor alignment reduces the service life of the roller bearings and transmission elements.

Impacts on shafts can cause bearing damage.

- Do not exceed the permissible range of ambient operating temperature (19).
- Fasten the motor securely.
- Ensure that the ventilation is not impeded. The exhaust air, also the exhaust air of other machines next to the drive system, must not be taken in immediately.
- During operation, surfaces are hot, up to 140 °C! Ensure that guard preventing accidental contact is in place!

Ensure an even surface, solid foot/flange mounting and exact alignment if a direct clutch is connected. Avoid resonances with the rotational frequency and double mains frequency which may be caused by the assembly.

Use appropriate means to mount or remove transmission elements (heating) and cover belt pulleys and clutches with a touch guard. Avoid impermissible belt tensions.

Stop!

Ensure a correct belt tension!

The machines are halfkey balanced. The clutch must be halfkey balanced, too. The visible jutting out part of the key must be removed.

Designs with shaft end at the bottom must be protected with a cover which prevents the ingress of foreign particles into the fan.

5.4 Holding brake (option)

Important notes

As an option, the motors can be fitted with a brake. The installation of brakes (in or on the motor) increases the length of the motor.

Note!

The brakes used are not fail-safe because interference factors, which cannot be influenced (e.g. oil ingress), can lead to a reduction in torque.

The brakes are used as holding brakes and serve to hold the axes at standstill or in the deenergised state.

Emergency stops at higher speeds are possible, but high switching energy increases wear on the friction surfaces and the hub (see wear of brakes, page 25 and 26).

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

The brakes operate according to the closed-circuit principle, i.e. the brake is closed in the deenergised state. The brakes for DC supply can be fed with a bridge-rectified DC voltage (bridge rectifier) or with a smoothed DC voltage. Information on the permissible voltage tolerance is provided in the respective motor catalogue.

If long motor supply cables are used, pay attention to the ohmic voltage drop along the cable and compensate for it with a higher voltage at the input end of the cable.

The following applies to Lenze system cables:

	U* [V]	Resulting supply voltage
$U^* = U_B + \left \frac{m}{m} \cdot L \cdot I_B \right $	U _B [V]	Rated voltage of the brake
	l [m] Cable len	Cable length
	I _B [A]	Rated current of the brake

Stop!

If no suitable voltage (incorrect value, incorrect polarity) is applied to the brake, the brake will be applied and can be overheated and destroyed by the motor continuing to rotate.

The shortest operating times of the brakes are achieved by DC switching of the voltage and a suppressor circuit (varistor or spark suppressor). Without suppressor circuit, the operating times may increase. A varistor/spark suppressor limits the breaking voltage peaks. It must be ensured that the power limit of the suppressor circuit is not exceeded. This limit depends on the brake current, brake voltage, disengagement time and the switching operations per time unit.

Furthermore, the suppressor circuit is necessary for interference suppression and also increases the service life of the relay contacts (external, not integrated in the motor).

Please refer to the catalogue for servo motors for detailed information about holding brakes.

Note!

The brake cannot be readjusted. When the wear limit is reached, the brake has to be replaced.

Holding brake (option) Permanent magnet holding brakes

5.4.1 Permanent magnet holding brakes

These brakes are used as holding brakes and serve to hold the axes without backlash at standstill or in the deenergised state.

When activating the brake, it must be ensured that the brake is released or engaged at zero speed to avoid unnecessary and rapid wear of the brake.

When used solely as holding brakes, the brakes are virtually wear free on their friction surfaces. If the max. permissible switching energy per emergency stop (see catalogue) is not exceeded, at least 2000 emergency stop functions from a speed of 3000 rpm are possible.

w	_	1/2	1	ω^2	[l] W	Energy
~~		/2	ges	ω	J _{tot} [kgm ²]	Total moment of inertia
					ω [¹ / _s]	Angular velocity $\omega = 2\pi n/60$, n= speed [rpm]

The holding torques specified in the catalogue only apply when the motor is at standstill. In the case of a slipping brake, the dynamic braking torque always applies which depends on the speed.

Stop!

The holding brake is only designed for a limited number of emergency stops. Utilisation as a working brake, e.g. to decelerate a load, is not permissible.

Note!

The brakes are maintenance-free and cannot be adjusted. In the event of wear, e.g. through emergency stops, the brakes must be replaced.

These brakes operate according to the closed-circuit principle, i.e. the brake is closed in the deenergised state.

Brakes with a rated voltage of DC 24 V are designed for smoothed DC voltages with a ripple of <1 %. It must be ensured that the connector on the motor side is supplied with the minimum voltage of DC 24 V -10 %. If necessary, the voltage drop in the cable should also be considered. If the maximum voltage DC 24 V + 5 % is exceeded, the brake can close again. Supplying the brake with bridge-rectified DC voltage (bridge rectifier without additional smoothing) or a DC voltage with a ripple of >1 % can lead to a malfunctioning of the brake or an increase in the engagement and disengagement times.

Brakes with a rated voltage of DC 205 V are designed for bridge-rectified DC voltage, i.e. for supply via a bridge rectifier from the 230 V mains (half-wave rectifiers are not permissible). Supplying the brake with smoothed DC voltage can lead to malfunctioning or an increase in the engagement and disengagement times. With regard to the minimum and maximum voltages, the same conditions apply as for brakes with 24 V, i.e. the permissible voltage tolerance is 205 V DC +5 %, -10 %.

5

Holding brake (option) Permanent magnet holding brakes

Wear of permanent magnet brakes

If applied as directed (application as holding brakes), the permanent magnet brakes of the servo motors are wear free and intended for long operating times. The wear on the friction lining is due to e.g. emergency stops.

The table below describes the different reasons for wear and their impact on the components of the permanent magnet brakes.

Component	Effects	Influencing factors	Cause
Friction lining / friction surface at the armature plate	Wear on the friction lining	Applied friction energy	Braking during operation (impermissible, holding brakes!)
and external pole			Emergency stops
			Overlapping wear when the drive starts and stops
			Active braking by the drive motor with the help of the brake (quick stop)
Springs	Fatigue failure of the springs	Number of switching operations of the brake	Axial duty cycle of the springs
Permanent magnet	Useless brake	Temperature, overvoltage	Excessive overvoltages / temperatures

Stop!

In case of wear above the maximum air gap () brake operating instructions), application of the brake cannot be ensured. In this case, no braking process is carried out.

ΕN

Holding brake (option) Spring-applied holding brakes

5.4.2 Spring-applied holding brakes

These brakes are used as holding brakes and serve to hold the axes without backlash at standstill or in the deenergised state.

For permissible operating speeds and characteristics, please see the respective valid motor catalogue. Emergency stops at higher speeds are possible, but high switching energy increases wear on the friction surfaces and the hub.

Stop!

The friction surfaces must always be free from oil and grease because even small amounts of grease or oil will considerably reduce the braking torque.

The formula below provides a simplified way to calculate friction energy per switching cycle which must not exceed the limit value for emergency stops that depends on the operating frequency (motor catalogue; Lenze drive solutions: Formulas, dimensioning, and tables).

٨٨	Q [1]	Friction energy
$Q = \frac{1}{2} \cdot J_{ges} \cdot \Delta \omega^2 \cdot \frac{M_K}{M}$	J _{tot} [kgm ²]	Total mass inertia (motor + load)
$M_{\rm K} - M_{\rm L}$	$\Delta \omega [1/s]$	Angular velocity $\omega = 2\pi n/60$, n= speed [rpm]
	M _K [Nm]	Characteristic torque
	M _i [Nm]	Load torque

Depending on the operating conditions and possible heat dissipation, the surface temperatures can be up to 130 $^\circ C.$

The spring-applied brakes operate according to the closed-circuit principle, i.e. the brake is closed in the deenergised state. The brakes can be fed with a bridge-rectified DC voltage (bridge rectifier) or with a smoothed DC voltage. The permissible voltage tolerance is $\pm 10\%$.

For more information on spring-applied brakes, please refer to the corresponding catalogues and operating instructions of the brakes.

Wear on spring-applied brakes

Spring-applied brakes of the INTORQ BFK458, BFK460 series and the spring-applied brake of the MQA motors are wear resistant and designed for long maintenance intervals.

However, the friction lining, the teeth between the brake rotor and the hub, and also the braking mechanism are naturally subject to function-related wear which depends on the application case (see table). In order to ensure safe and problem-free operation, the brake must therefore be checked and maintained regularly and, if necessary, replaced (see brake maintenance and inspection).

The following table describes the different causes of wear and their effect on the components of the spring-applied brake. In order to calculate the useful life of the rotor and brake and determine the maintenance intervals to be prescribed, the relevant influencing factors must be quantified. The most important factors are the applied friction energy, the starting speed of braking and the switching frequency. If several of the indicated causes of wear on the friction lining occur in an application, their effects are to be added together.

- -

_ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _

Holding brake (option) Spring-applied holding brakes

Component	Effects	Influencing factors	Cause
Friction lining	Wear on the friction lining	Applied friction energy	Braking during operation (impermissible, holding brakes!)
			Emergency stops
			Overlapping wear when the drive starts and stops
			Active braking by the drive motor with the help of the brake (quick stop)
		Number of start-stop cycles	Starting wear if motor is mounted in a position with the shaft vertical, even if the brake is open
Armature plate and flange	Running-in of armature plate and flange	Applied friction energy	Friction between the brake lining and the armature plate or flange e.g. during emergency braking or service brake operation
Teeth of the brake rotor	Teeth wear (primarily at the rotor end)	Number of start-stop cycles, Level of the braking torque, Dynamics of the application, Speed fins in operation	Relative movement and impacts between brake rotor and brake hub
Armature plate bracket	Armature plate, cap screws and bolts are deflected	Number of start-stop cycles, Level of braking torque	Load changes and impacts due to reversal error during interaction between armature plate, cap screws and guide bolts
Springs	Fatigue failure of the springs	Number of switching operations of the brake	Axial load cycle and shearing stress on the springs due to radial reversing error of the armature plate

ΕN

5

6 Electrical installation

Important notes

6.1 Important notes

Danger!

Hazardous voltage on the power connections even when disconnected from mains: residual voltage >60 V!

Before working on the power connections, always disconnect the drive component from the mains and wait until the motor is at standstill. Verify safe isolation from supply!

Stop!

Electrical connections must be carried out in accordance with the national and regional regulations!

Observe tolerances according to IEC/EN 60034-1:

- Voltage ±5 %
- Frequency ±2 %
- Wave form, symmetry (increases heating and affects electromagnetic compatibility)

Observe notes on wiring, information on the nameplate, and the connection scheme in the terminal box.

- The connection must ensure a continuous and safe electrical supply, i.e.
 - no loose wire ends,
 - use assigned cable end fittings,
 - ensure good electrical conductivity of the contact (remove residual lacquer) if an (additional) PE connection on the motor housing is used),
 - establish a safe PE conductor connection,
 - tighten the plugin connector to the limit stop.
 - After the connection is completed, make sure that all connections on the terminal board are firmly tightened.
- The smallest air gaps between uncoated, live parts and against earth must not fall below the following values.

Minimum requirements for basic insulation according to IEC/EN 60664-1 (CE)	Higher requirements for UL design	Motor diameter
2.07	6.4 mm	< 178 mm
3.87 mm	9.5 mm	> 178 mm

- The terminal box has to be free of foreign bodies, dirt, and humidity.
- All unused cable entries and the box itself must be sealed against dust and water.

6

Wiring according to EMC

Electrical installation

6.2 Wiring according to EMC

The EMC-compliant wiring of the motors is described in detail in the Operating Instructions for the Lenze controllers.

- Use of metal EMC cable glands with shield connection.
- Connect the shielding to the motor and to the device.

6.3 Plug connectors

Stop!

STOP

- Tighten the coupling ring of the connector.
- If plugs **without** SpeedTec bayonet nut connectors are used, the connector boxes for the power / encoder / fan connections must be secured by O-rings if loadings by vibration occur:
 - M17 connector box with O-ring 15 x 1.3 mm
 - M23 connector box with O-ring 18 x 1.5 mm
 - M40 connector box with O-ring 27 x 4.0 mm
- Never disconnect plugs when voltage is being applied! Otherwise, the plugs could be destroyed! Inhibit the controller before disconnecting the plugs!

When connecting the cable socket to the motor connector, make sure that the aids to orientation (pos. 1) are facing each other. Only then, trouble-free operation is ensured.

6.3.1 Power connections / holding brake

6-pole (external view of poles)			
Pin	Standard description	Meaning	M23
1	BD1	Holding brake +	The second secon
2	BD2	Holding brake -	
÷	PE	PE conductor	
4	U	Power phase U	5
5	V	Power phase V	
6	W	Power phase W	4-

_ _ _ _ _ _ _ _

_ _ _ _

- - - - - -

NCA 1921, MCS 1419, MQA 20 (external view of poles)				
Pin	Standard description	Meaning	M40	
1 2	Not assigned		- V +	
+ -	BD1 BD2	Holding brake + Holding brake -		
(PE	PE conductor		
U V	U V	Power phase U Power phase V		
W	W	Power phase W		

* At times, older documents also stated plug sizes of 1.0 (M23) and 1.5 (M40).

6.3.2 Holding brake

MDFQA		
Pin	Standard description	Meaning
1	BD1	Holding brake +
2	BD2	Holding brake -

6.3.3 Fan

Single-phase (external view of poles)			
Pin	Standard description	Name	M17
÷	PE	PE conductor	Ð
1 2	U1 U2	AC fan	5 0 1
3 4 5 6	U+ U-	DC fan	2 6 4 3 connector 001 iso/dms
8-pole (e	external view of poles)	1	
Pin	Standard description	Name	M23
÷	PE	PE conductor	
1 2 3	Not assigned		
A B	U1 U2	AC fan	
C D	U+ U-	DC fan	A
Three-pl	nase (external view of po	oles)	
Pin	Standard description	Name	M17
Ð	PE	PE conductor	Ð
1	U	Fan	1
2	Not assigned		
3	V	Fan	6
4 5	Not assigned		4
6	W	Fan	3 M connector-001

* At times, older documents also stated plug sizes of 1.0 (M23) and 1.5 (M40).

Electrical installation 6 Plug connectors Feedback system

_ _ _ _ _ _ _ _

_

Feedback system 6.3.4

_

_ _ _ - - -

Resolver	(external view of poles)		
Pin	Designation	Meaning	M23
1	+Ref	Transformer windings	
2	-Ref	(reference windings)	,Code 0°
3	+VCC ENP	Supply: electronic nameplate ¹⁾	
4	+COS	Stater windings sesing	
5	-COS	Stator windings cosine	
6	+SIN	Stator windings	$P_2 P_7$
7	-SIN	Sine	
8	Natassigned		3 10 12 6
9	Not assigned		4 11 5
11	+КТҮ		
12	-KTY	Thermal sensor KTY	
Increme	ntal encoder / sin/cos ab	solute value encoder Hiperface (external view of poles)
Pin	Designation	Meaning	M23
1	В	Track B / + SIN	Code 20°
2	Ā	Track A inverse / - COS	
3	A	Track A / + COS	
4	+ U _B	Supply +	
5	GND	Mass	
6	Z	Zero track inverse / - RS485	
7	Z	Zero track / + RS485	
8	Not assigned		3 115
9	B	Track B inverse / - SIN	
10		Not assigned	
11	+KTY	Thermal sensor KTV	_
12	-KTY		MI plug-in connector-001.iso/dms
Sin/cos a	absolute value encoder v	vith EnDat interface (external vie	w of poles)
Pin	Designation	Meaning	M23
1	UP sensor	Supply UP sensor	
2	Not assigned		
5	0 V concor	0 V concor supply	
4 5			Code 0°
6	-KTY	Thermal sensor KTY	
7	+ U _R	Supply + / +VCC ENP ¹⁾	
•	cl.	Clock pulse EnDat interface	O OI
8		Clock pulse inverse EnDat	$\left(\bigcirc 11 \stackrel{12}{\bigcirc} 12 \bigcirc 12$
9	Cycle	interface	
10	GND	Mass	$16 \bigcirc 14 3$
11	Shield	Shield for housing of encoder	
12	B	Track B	42107 6 °0/5-1
13	B Data	Irack B Inverse	
14			
16	$\frac{A}{\Delta}$	Track A inverse	
17	Data	Data inverse EnDat interface	

Only for versions with electronic nameplate ENP.
 * At times, older documents also stated plug sizes of 1.0 (M23) and 1.5 (M40).

6 Electrical installation

_ _ _ _

Terminal box Feedback system

_ _ _ _ _

6.4 Terminal box

_ _ _ _ _ _

_

- - -

Note!

Open the holes on the underside of the knock out terminal box when the cover is closed.

cable glands and terminal stads for the power terminal box
--

Motor type /		Power connection						
motor size		Screwed connections		Terminal			Terminal board	
			Cable cross-section [mm ²]	Stripping length [mm]	Tightening torque [Nm]	Threaded bolt	Tightening torque [Nm]	
MCA	10, 13, 14, 17	1 x M20 x 1.5 + 1 x M16 x 1.5	0.08 2.5	10 11	2)			
	19, 21	1 x M32 x 1.5 + 1 x M25 x 1.5	0.2 10	10 11	2)			
	20	2 x M20 + 2 x M 25 + 2 x M32	2.5 16	18 20	2)			
	22	1 x M40x1.5 + 1 x M50x1.5 + 1 x M20x1.5 + 1 x M16x1.5	10 35	18	3,2			
	26	1 x M50 x 1.5 + 1 x M63 x 1.5 + 1 x M20 x 1.5 + 1 x M16 x 1.5				M12	15.5	
MQA	20	2 x M20 + 2 x M 25 + 2 x M32	2.5 16	18 20	2)			
	22	1 x M40x1.5 + 1 x M50x1.5 + 1 x M20x1.5 + 1 x M16x1.5	10 35	18	3.2			
	26	1 x M50 x 1.5 + 1 x M63 x 1.5 + 1 x M20 x 1.5 + 1 x M16 x 1.5				M12	15.5	
MCS	09, 12, 14D, 14H, 14L15, 14P14, 19F15, 19J15	2 x M20 + 2 x M25 + 2 x M32	0.08 2.5 1)	10 11	2)			
	14L32, 14P32, 19F13, 19J30, 19P		0.2 10	10 11	2)			
MDFQA	160	2 x M63 x 1.5 + 1 x M16 x 1.5				M12	15.5	
MD□KS	056, 071	1 x M20 x 1.5 + 1 x M16 x 1.5	0.08 2.5	10 11	2)			

Tab. 1Cable glands and connecting terminals

1) 4 mm² without wire end ferrule

2) Spring terminal

Cable glands for the fan terminal box

Cable glands for the fan terminal box

Motor type/size		Screwed connection
MCA/MQA	20	
	22	1 x M 16 x 1.5
	26	

6.4.1 Power connections

MCA; MCS, MQA 2022, MD□KS, SDSGA, SDSGS			
Terminal	Standard description	Meaning	
ŧ	PE	PE conductor	
U	U	Motor winding phase U	
V	V	Motor winding phase V	
W	W	Motor winding phase W	
TP1	TP1	DTC thermister	
TP2	TP2		
TB1	TB1	Thermostat	
TB2	TB2	Thermal NC contact	

MCA 26, MQA 26, MDFQA 160			
Terminal	Standard description	Meaning	
÷	PE	PE conductor	
1	U1	Start of winding phase U	
2	V1	Start of winding phase V	
3	W1	Start of winding phase W	
4	W2	End of winding phase W	
5	U2	End of winding phase U	
6	V2	End of winding phase V	
	MCA 26, MQA 2 Terminal (+) 1 2 3 4 5 6	MCA 26, MQA 26, MDFQA 160 Terminal Standard description	

Star connection	Delta connection
$PE \textcircled{(W2)}_{(U2)} (V2) (V2) (V2) (V2) (V2) (V2) (V2) (V2)$	$PE \textcircled{(4)}{(1)} (V1) (V1) (V1) (V1) (V1) (V1) (V1) (V1)$

6.4.2 Holding brake DC 205 V - connected via rectifier (optionl)

Terminal	Standard description	Meaning	
~	BA1	Connection to L1 - mains	AC-excited brake (rectifier)
~	BA2	Connection to N - mains	
+	BD1 (factory-set wiring)	Connection of holding brake +	
-	BD2 (factory-set wiring)	Connection of holding brake -	
o∕-o	Switching contact, DC switc	Switching contact, DC switching	

6.4.3 Holding brake DC 24 V (optional)

Terminal	Standard description	Meaning
BD1	BD1	Holding brake +
BD2	BD2	Holding brake -

6 Electrical installation

Terminal box Fan

6.4.4 Fan

1-phase		
Terminal	Standard description	Meaning
÷	PE	PE conductor
U1	U1	Connection to L1 - mains
U2	U2	Connection to N - mains

3-phase			
Terminal	Standard description	Meaning	
ŧ	PE	PE conductor	
L1	U	Connection to L1 mains	
L2	V	Connection to L2 mains	
L3	W	Connection to L3 mains	

- - - - - -

_

Feedback system

6.4.5 Feedback system

_ _ _ _

_ _ _ _

- - -

Resolver		
Terminal	Designation	Meaning
B1	+Ref	Transformer windings
B2	-Ref	(reference windings)
B3	+ VCC ENP	Supply: electronic nameplate ¹⁾
B4	+COS	Stator winding cosine
B5	-COS	
B6	+SIN	Stator winding sine
B7	-SIN	
B8		Not assigned
R1	+KTY	Thermal sensor KTY
R2	-KTY	

1) Only for versions with electronic nameplate ENP.

Incremental encoder / sin/cos absolute value encoder with Hiperface		
Terminal	Designation	Meaning
B1	+ U _B	Supply +
B2	GND	Mass
B3	A	Track A / + COS
B4	Ā	Track A inverse / - COS
B5	В	Track B / + SIN
B6	B	Track B inverse / - SIN
B7	Z	Zero track / + RS485
B8	Z	Zero track inverse / - RS485
B10	Shield - housing	Shield - incremental encoder
R1	+KTY	Thermal concer KTV
R2	-KTY	mermal sensor KTY

Sin/cos absolute value encoder with EnDat interface		
Terminal	Designation	Meaning
B1	+ U _B	Supply + / + VCC ENP ¹⁾
B2	GND	Mass
B3	A	Track A
B4	Ā	Track A inverse
B5	В	Track B
B6	B	Track B inverse
B7	Data	Data EnDat interface
B8	Data	Data inverse EnDat interface
B20	Cycle	Clock pulse EnDat interface
B21	Cycle	Clock pulse inverse EnDat interface
B22	UP sensor	UP sensor
B23	0 V sensor	0 V sensor
B24	Shield	Shield for housing of encoder
B25		Not assigned
R1	+KTY	Thermal concer KTV
R2	-KTY	

1) Only for versions with electronic nameplate ENP.

7 Safety engineering

Motor-encoder combinations

Drive systems with Servo Drives 9400 and safety module SM301 provide speed-dependent safety functions for safe speed monitoring and/or safe relative-position monitoring. Observe permissible motor-encoder combinations during configuration.

- ▶ Possible speed-dependent safety functions with safety module SM301:
 - Safe stop 1 (SS1)
 - Safe operational stop (SOS)
 - Safely limited speed (SLS)
 - Safe maximum speed (SMS)
 - Safe direction (SDI)
 - Safe speed monitor (SSM)
 - Safely limited increment (SLI)
- ► Permissible motor-encoder combinations for these functions:

Synchronous	Encoder		Safe speed monito	oring with SM301
servo motors	Туре	Product key		
MCS 06 19	Sin/cos absolute value, single-turn	AS1024-8V-K2	Circular and an	PL d / SIL 2
	Sin/cos absolute value, multi-turn	AM1024-8V-K2	Single-encoder	
MDXKS 56 / 71	Resolver	RV03	concept	PL e / SIL 3
		Тм	vo-encoder concept	Up to PL e / SIL 3

Asynchronous	Encoder		Safe speed monito	oring with SM301
servo motors	Туре	Product key		
MCA 10 20	Sin/cos incremental	IG1024-5V-V3	Single-encoder	
MCA 10 26	Resolver	RV03	concept	PLE/ SILS
MQA 20 20		Tw	vo-encoder concept	Up to PL e / SIL 3

A "two-encoder concept" includes e.g. a resolver as motor encoder and, at the same time, an absolute value encoder (sin/cos), an incremental encoder (TTL), or digital encoder (SSI/bus) as position encoder on the machine.

In the case of the "2-encoder concept", the achievable risk mitigation (PL/SIL) depends on the suitability of the encoders used.

Note!

If feedback systems for safety functions are used, the manufacturer's documentation must be observed!

Important notes

8.1 Important notes

For trial run without output elements, lock the featherkey. Do not deactivate the protective devices, not even in a trial run.

Check the correct operation of the brake before commissioning motors with brakes.

8.2 Before switching on

Note!

Before switch-on, you must ensure that the motor starts with the intended direction of rotation. Lenze motors rotate CW (looking at the driven shaft) if a clockwise

three-phase field $L1 \rightarrow U1$, $L2 \rightarrow V1$, $L3 \rightarrow W1$ is applied.

Before initial commissioning, before commissioning after an extended standstill period, or before commissioning after an overhaul of the motor, the following must be checked:

- Measure the insulation resistance, in case of values ${\leq}1~k\Omega per$ volt of rated voltage, dry the winding.
- Have all screwed connections of the mechanical and electrical parts been firmly tightened?
- Is the unrestricted supply and removal of cooling air ensured?
- Has the PE conductor been connected correctly?
- Have the protective devices against overheating (temperature sensor evaluation) been activated?
- Is the controller correctly parameterised for the motor?
 (G) Controller operating instructions)
- Are the electrical connections o.k.?
- Does the motor connection have the correct phase sequence?
- Are rotating parts and surfaces which can become very hot protected against accidental contact?
- Is the contact of good electrical conductivity if a PE connection on the motor housing is used?

8 Commissioning and operation

Functional test

8.3 Functional test

- Check all functions of the drive after commissioning:
- Direction of rotation of the motor
 - Direction of rotation in the disengaged state (see chapter "Electrical connection").
- Torque behaviour and current consumption
- Function of the feedback system

8.4 During operation

Stop!

- Fire hazard! Do not clean or spray motors with flammable detergents or solvents.
- Avoid overheating! Deposits on the drives impede the heat dissipation required and have to be removed regularly.

Danger!

During operation, motor surfaces may not be touched. According to the operating status, the surface temperature for motors can be up to 150°C. For the protection against burn injuries, provide protection against contact, if necessary. Observe cooling-off times!

During operation, carry out inspections on a regular basis. Pay special attention to:

- Unusual noises
- Oil spots on drive end or leakages
- Irregular running
- Increased vibration
- Loose fixing elements
- Condition of electrical cables
- Speed variations
- Impeded heat dissipation
 - Deposits on the drive system and in the cooling channels
 - Pollution of the air filter

In case of irregularities or faults: (🛄 45).

9.1 Important notes

Danger!

Hazardous voltage on the power connections even when disconnected from mains: residual voltage >60 V!

Before working on the power connections, always disconnect the drive component from the mains and wait until the motor is at standstill. Verify safe isolation from supply!

Stop!

Repair work or replacement of defective safety encoders must only be carried out by Lenze service personnel!

Shaft sealing rings and roller bearings have a limited service life.

Regrease bearings with relubricating devices while the low-voltage machine is running. Only use the grease recommended by the manufacturer. If the grease drain holes are sealed with a plug, (IP54 drive end; IP23 drive and non-drive end), remove plug before commissioning. Seal bore holes with grease.

9.2 Maintenance intervals

Inspections

• If the machine is exposed to dirt, clean the air channels regularly.

9.2.1 Motor

- Only the bearings and shaft sealing rings become worn.
 - Check bearings for noise (after approx. 15,000 h at the latest).
- In order to prevent overheating, remove dirt deposits on the drives regularly.
- We recommend carrying out an inspection after the first 50 operating hours. In this way, you can detect and correct any irregularities or faults at an early stage.

9.2.2 Safety encoder

After a service life of 10 years, an inspection of the metal elastomer torque plate is required for the encoders AS1024-8V-K and AM1024-8V-K. If no replacement is required, an inspection interval of max. 5 years has to be observed.

Stop!

Repair work or replacement of defective safety encoders must only be carried out by Lenze service personnel!

Maintenance operations Holding brake

9.2.3 Holding brake

The brakes need to be checked on a regular basis to ensure safe and trouble-free operation.

The necessary maintenance intervals primarily depend on the stress to which the brake is subjected in an application. When a maintenance interval is being calculated, all causes of wear must be taken into account (see notes "Wear on spring-applied brakes"). In the case of brakes which are subjected to low levels of stress, e.g. holding brakes with emergency stop function, regular inspections at a fixed time interval are recommended. In order to reduce the amount of work involved in maintenance, perform the inspection at the same time as other maintenance work carried out cyclically on the machine if possible.

If the brakes are not properly serviced, operating faults, production outages or damage to machinery can occur. A maintenance concept adapted to the operating conditions and the stresses to which the brakes are subjected must therefore be drawn up for every application. For brakes, the maintenance intervals and servicing work listed in the following table are necessary.

Maintenance interval for holding brake with emergency stop	Maintenance work
At least every 2 years	Inspection of the brake integrated in the motor:
After 1 million cycles at the latest	 Check ventilation function and
Shorter intervals in the case of frequent emergency stops!	activation/deactivation

The brakes of the MCS, MCA, MQA, and MD \Box KS motors cannot be accessed from the outside! (Maintenance work on the brakes must be carried out by Lenze Service staff only!)

9.3 Maintenance operations

STOP

Stop!

- Make sure that no foreign bodies can enter the inside of the motor!
- Do not remove plugs when voltage is being applied!

Danger!

- Only work on the drive system when it is in a deenergised state!
- Hot motor surfaces of up to 150 °C. Observe cooling times!
- Remove loads acting on motors or secure loads acting on the drive!

9.3.1 Blower

If the motor is equipped with a dust protection filter, this filter must be cleaned or even replaced at regular intervals depending on the amount of dust (if necessary, daily).

For motors equipped with a dry filter, the dust must be shaken out completely. If the dust is wet, the filter mat must be replaced.

.

Fan with dust protection filter

9.3.2 Fan with dust protection filter

Dry-type filters are used for the motors. Dry dust should be removed completely by tapping.

Note!

The dust filter is mounted on the ventilation aggregate. Depending on the amount of dust, the filter must be cleaned and replaced in regular intervals!

Soiled filters reduce the amount of cooling air significantly. This leads to a higher winding temperature, reduces its service life and may lead to damages.

When replacing the filter you **must** take care that all covers and filters are tightly fixed so that there are no leaks for harmful dust!

In case of wet dust you must install new filter mats. The internal cleanness of the motor should be checked at the latest when you replace the filter for the first time.

9.3.3 Motors with bearing relubricating devices

Under normal operating conditions, the bearings used have a service life of approx. 20.000 operating hours. Ex works the bearings are filled with a high-quality, heat-resistant roller bearing grease. (The permissible operating temperature range of the grease used is between -25°C and +120°C).

Relubrication period, type of grease and amount of grease are stated on an additional indicating label on the motor.

Manufacturer designation Α

В Designation of grease type according to D DIN51502

Relubrication period Amount of grease

9 Maintenance/repair

Maintenance operations Motor plug connection assignment

9.3.4 Motor plug connection assignment

This motor-plug assignment is a rough selection of possible mechanical combinations.

Note!

When making your selection, the motor data and permissible currents of the cables according to the system cable system manual must be observed.

Further information is provided in the system cables system manual at:

www.Lenze.de \rightarrow Download \rightarrow Technical documentation \rightarrow Accessories (product range) \rightarrow System manual (filter: Content type)

Connector	Connectable cross-section of the motor cable
EWS0001 / EWS1001	1.0 mm ² , 1.5 mm ² , 2.5 mm ²
EWS0012 / EWS1012	2.5 mm ² , 4.0 mm ²
EWS0013 / EWS1013	6.0 mm ² , 10.0 mm ² , 16.0 mm ²

9.3.5 Power connection for plug-in connector at the cable end

Asynchronous servo motors

Motor type		Plug size *	Screw plug		SpeedTec	
			Spare part designation	Coding in the system cable type code	Spare part designation	Coding in the system cable type code
MCA	10I40 S00		EW50001	M01	EWS1001	M04
	13I34 Fx0					
	13I41 S00					
	14L16 Fx0					
	14L20 S00					
	14L35 Fx0	M23				
	14L41 S00					
	17N17 Fx0					
	17N23 S00					
	17N35 Fx0					
	17N41 S00					
	19S17 Fx0	1140	FW(60010	1402	EW/C1012	4405
	19523 S00	1040	EW30012	10102	EWSIUIZ	10105
	19535 Fx0 M40	M40	EWS0012	M02	EWS1012	M05
			EWS0013	M03	EWS1013	M06
	19S42 S00	M40	EWS0012	M02	EWS1012	M05
	20X14 Fx0		EWS0013	M03	EWS1013	M06
	20X29 Fxx	M40	EWS0013	M03	EWS1013	M06
	21X17 Fx0	M40	EWS0012	M02	EWS1012	M05
			EWS0013	M03	EWS1013	M06
	21X25 S00	M40	EWS0012	M02	EWS1012	M05
	21X35 Fx0		EWS0013	M03	EWS1013	M06
	21X42 S00	11.10	EWS0012	M02	EWS1012	M05
MQA	20	10140	EWS0013	M03	EWS1013	M06

* At times, older documents also stated plug sizes of 1.0 (M23) and 1.5 (M40).

EN

Synchronous servo motors

_ _ _ _ _

Motor type		Plug size *	Screw plug		SpeedTec	
			Spare part designation	Coding in the system cable type code	Spare part designation	Coding in the system cable type code
MDSKS 036 - 071						
MDFK:	S 071	M23	EWS0001	M01	EWS1001	M04
MCS	06					
	09					
	12					
	14D					
	14H12 Fx0					
	14H15 S00					
	14H28 Fx0	M40	EWS0012	M02	EWS1012	M05
			EWS0013	M03	EWS1013	M06
	14H32 S00		EWS0001	M01	EWS1001	M04
	14L14 Fx0	M23				
	14L15 S00					
	14L30 Fx0	M40	EWS0012	M02	EWS1012	M05
	14L32 S00		EWS0013	M03	EWS1013	M06
	14P11 FXU	M23	EWS0001	M01	EWS1001	M04
	543.14 14D26 Evo		514/50040	1400	514/64.04.0	
	14P20 FXU	M40	EWS0012	M02	EWS1012	M05
	14P52 500		EWSUUIS	10105	ENAZIOTZ	10100
	19F12 FX0	M23	EWS0001	M01	EWS1001	M04
	19F14 500					
	19F30- S00	M40	EWS0012 EWS0013	M02 M03	EWS1012 EWS1013	M05 M06
	19112- Fx0					
	19114- 500	M23	FW\$0001	M01	FWS1001	M04
	19/29 Fx0	M40	EW\$0013	M03	EWS1013	M06
	19J30 S00	M40	EW\$0012	M02	EWS1012	M05
	19P12 Fx0		EWS0013	M03	EWS1013	M06
	19P14 S00	M23	EWS0001	M01	EWS1001	M04
	19P29 Fx0					
	19P30 S00	M40	EWS0013	M03	EWS1013	M06

* At times, older documents also stated plug sizes of 1.0 (M23) and 1.5 (M40).

_ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

9.3.6 Plug-in connector at the cable end

Feedback

Type of encoder	Plug size *	Screw plug		SpeedTec	
		Spare part designation	Coding in the system cable type code	Spare part designation	Coding in the system cable type code
Resolver	M23	EWS0006	F01	EWS1006	F05
Incremental encoder		EWS0010	F02	EWS1010	F06
Sin/cos encoder, Hiperface		EWS0010	F02	EWS1010	F06
Sin/cos encoder, EnDat		EWS0017	F03	EWS1017	F07
Incremental encoder, Renco R35		EWS0023	F04	EWS1023	F08

9 Maintenance/repair

_ _ _ _ _ _

Repair

Blower

_ _ _ _ _ _ _ _ _ _

Blower	Plug size *	Screw plug		SpeedTec	
		Spare part designation	Coding in the system cable type code	Spare part designation	Coding in the system cable type code
MDFKS	M23	EWS0003	L01	EWS1003	L03
MCS, MCA, MQA	M17	EWS0021	L02	EWS1021	L04

* At times, older documents also stated plug sizes of 1.0 (M23) and 1.5 (M40).

9.4 Repair

- It is recommended to have all repairs performed by Lenze Service.
- Delivery of spare parts is available upon request.
- In case of version with safety encoder, observe chapter 9.2.2!

If faults occur during operation of the drive system:

• First check the possible causes of malfunction according to the following table.

Note!

Also observe the corresponding chapters in the operating instructions for the other components of the drive system.

If the fault cannot be remedied using one of the listed measures, please contact the Lenze Service.

Danger!

- Only work on the drive system when it is in a deenergised state!
- Hot motor surfaces of up to 150 °C. Observe cooling times!
- Remove loads acting on motors or secure loads acting on the drive!

10 Troubleshooting and fault elimination

_ _ _ _ _ _

- - -

- - -

- - -

_

Fault	Cause	Remedy
Motor too hot	Insufficient cooling air, blocked air ducts.	Ensure unimpeded circulation of cooling air
Can only be evaluated by	Preheated cooling air	Ensure a sufficient supply of fresh cooling air
measuring the surface temperature: • Non-ventilated motors	Overload, with normal mains voltage the current is too high and the speed too low	Use larger drive (determined by power measurement)
 > 140 °C Externally ventilated or 	Rated operating mode exceeded (S1 to S8 IEC/EN 60034-1)	Adjust rated operating mode to the specified operating conditions. Determination of correct drive by expert or Lenze customer service
> 110 °C	Loose contact in supply cable (temporary single-phase operation!)	Tighten loose contact
	Fuse has blown (single-phasing!)	Replace fuse
	Overload of the drive	 Check load and, if necessary, reduce by means of longer ramp-up times Check winding temperature
	Heat dissipation impeded by deposits	Clean surface and cooling fins of the drives
Motor too hot	Insufficient cooling air, blocked air ducts.	Ensure unimpeded circulation of cooling air
Can only be evaluated by	Preheated cooling air	Ensure a sufficient supply of fresh cooling air
measuring the surface temperature: • Non-ventilated motors	Overload, with normal mains voltage the current is too high and the speed too low	Use larger drive (determined by power measurement)
 Externally ventilated or 	Rated operating mode exceeded (S1 to S8 IEC/EN 60034-1)	Adjust rated operating mode to the specified operating conditions. Determination of correct drive by expert or Lenze customer service
> 110 °C	Loose contact in supply cable (temporary single-phase operation!)	Tighten loose contact
	Fuse has blown (single-phasing!)	Replace fuse
	Overload of the drive	 Check load and, if necessary, reduce by means of longer ramp-up times Check winding temperature
	Heat dissipation impeded by deposits	Clean surface and cooling fins of the drives
Motor suddenly stops and does not restart	Overload monitoring of the inverter is activated	 Check controller settings Reduce load caused by longer acceleration times
Incorrect direction of rotation of the motor,	Motor cable polarity is reversed	Check the polarity and correct
correct display on the controller	Polarity of encoder cable reversed	
Motor rotates normally but does not reach the expected torque	Motor cable interchanged cyclically	Connect the phases at the motor cable connection correctly
Motor turns in one direction at maximum speed in an	Motor cable interchanged cyclically	Check motor connector and, if necessary, correct
uncontrolled manner	Polarity of encoder cable reversed	Check encoder connection and, if necessary, correct
Motor rotates slowly in one direction and cannot be influenced by the controller	cable reversed	Check the polarity and correct
Irregular running	Insufficient shielding of motor or resolver cable	Checking shielding and earth connection
	Drive controller gain too large	Adjust the gains of the controllers (see Drive controller operating instructions)
Vibrations	Insufficiently balanced coupling elements or machine	Rebalance
	Inadequate alignment of drive train Loose fixing screws	Realign machine unit, check foundation if necessary Check and tighten screw connections
Running noises	Foreign particles inside the motor Bearing damage	Repair by manufacturer if necessary
Surface temperature > 140°C	Overload of the drive	 Check load and, if necessary, reduce by means of longer ramp-up times Check winding temperature
	Heat dissipation impeded by deposits	Clean surface and cooling fins of the drives

Notes	

ΕN

CE

Lenze Drives GmbH Postfach 10 13 52 D-31763 Hameln Germany

(³ +49 (0)51 54 / 82-0

- +49 (0)51 54 / 82-28 00
- @ Lenze@Lenze.de
- www.Lenze.com

Ж

Lenze Service GmbH Breslauer Straße 3 D-32699 Extertal Germany

- 6 00 80 00 / 24 4 68 77 (24 h helpline)
 +49 (0)51 54 / 82-13 96
- @ Service@Lenze.de

10 9 8 7 6 5 4 3 2 1

