590H Series
DC Converter

Addendum
HA466272U001 Issue 1

© Copyright Eurotherm Drives Limited 1999

All rights strictly reserved. No part of this document may be stored in a retrieval system, or transmitted in any form or by any means to persons not employed by a Eurotherm group company without written permission from Eurotherm Drives Ltd.

Although every effort has been taken to ensure the accuracy of this document it may be necessary, without notice, to make amendments or correct omissions. Eurotherm Drives cannot accept responsibility for damage, injury, or expenses resulting therefrom.
WARRANTY

Eurotherm Drives warrants the goods against defects in design, materials and workmanship for the period of 12 months from the date of delivery on the terms detailed in Eurotherm Drives Standard Conditions of Sale IA058393C.

Eurotherm Drives reserves the right to change the content and product specification without notice.
Safety Information

Requirements

IMPORTANT: Please read this information BEFORE installing the equipment.

Intended Users
This manual is to be made available to all persons who are required to install, configure or service equipment described herein, or any other associated operation.

The information given is intended to highlight safety issues, and to enable the user to obtain maximum benefit from the equipment.

Application Area
The equipment described is intended for industrial (non consumer) motor speed control utilising dc shunt machines.

Personnel
Installation, operation and maintenance of the equipment should be carried out by qualified personnel. A qualified person is someone who is technically competent and familiar with all safety information and established safety practices; with the installation process, operation and maintenance of this equipment; and with all the hazards involved.

Hazards

WARNING!
This equipment can endanger life through rotating machinery and high voltages. Failure to observe the following will constitute an ELECTRICAL SHOCK HAZARD.

- The equipment must be permanently earthed due to the high earth leakage current.
- The drive motor must be connected to an appropriate safety earth.
- Before working on the equipment, ensure isolation of the mains supply from terminals L1, L2 and L3 and auxiliary supply terminals L/N.
- Never perform high voltage resistance checks on the wiring without first disconnecting the drive from the circuit being tested.
- When replacing a drive in an application and before returning to use, it is essential that all user defined parameters for the product’s operation are correctly installed.
- This equipment contains electrostatic discharge (ESD) sensitive parts. Observe static control precautions when handling, installing and servicing this product.

IMPORTANT: Metal parts may reach a temperature of 90 degrees centigrade in operation.

Application Risk
The specifications, processes and circuitry described herein are for guidance only and may need to be adapted to the user’s specific application. Refer to page 5-1.

Eurotherm Drives does not guarantee the suitability of the equipment described in this Manual for individual applications.

Risk Assessment
Under fault conditions, power loss or other operating conditions not intended, the equipment may not operate as specified. In particular:

- The motor speed may not be controlled
- The direction of rotation of the motor may not be controlled
- The motor may be energised
Safety Information

Enclosure
Ensure that the enclosure this product is mounted in is suitable for the environment. This product may be IP00 or IP20 and hence requires further protection to avoid personal injury.

Guards
The user must provide guarding and/or additional safety systems to prevent risk of injury and electric shock.

Protective Insulation
- All control and signal terminals are SELV, i.e. protected by double insulation. Ensure all wiring is rated for the highest system voltage.

Note: *Thermal sensors contained within the motor must be double insulated.*

- All exposed metalwork in the Converter is protected by basic insulation and bonding to a safety earth.

RCDs
These are not recommended for use with this product but where their use is mandatory, only Type B RCDs should be used.
Contents

Chapter 1 Getting Started

- **Introduction** ... 1-1
- **Standard Equipment** ... 1-1
- **Optional Equipment** .. 1-1
- **Equipment Inspection and Storage** 1-1
- **About this Manual** .. 1-1
 - How the Manual is Organised 1-2

Chapter 2 An Overview of the Converter

- **Component Identification** ... 2-1
- **Understanding the Product Code** 2-2

Chapter 3 Installing the Converter

- **Mechanical Installation** .. 3-1
 - Unpacking the Converter ... 3-1
 - Lifting the Converter .. 3-2
 - Mounting the Converter ... 3-2
 - Ventilation and Cooling Requirements 3-2
 - Installing the Fan .. 3-3
 - AC Line Choke ... 3-3
 - Changing DC Output Terminals 3-3
- **Electrical Installation** ... 3-3
 - Minimum Connection Requirements 3-4
 - Protective Earth Connections (PE) 3-5
 - Power Wiring Connections 3-6
 - Control Wiring Connections 3-8
 - Fan Wiring ... 3-8
 - Installation Drawings .. 3-9

Chapter 4 Operating the Converter

- **Setting-up the Converter** ... 4-1
- **Calibration** ... 4-1

Chapter 5 The Man-Machine Interface

- Refer to the Product Manual

Chapter 6 Programming Your Application

- Refer to the Product Manual

Cont.5
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 7</td>
<td>TRIPS AND FAULT FINDING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refer to the Product Manual</td>
<td></td>
</tr>
<tr>
<td>Chapter 8</td>
<td>ROUTINE MAINTENANCE AND REPAIR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Routine Maintenance</td>
<td>8-1</td>
</tr>
<tr>
<td></td>
<td>Repair</td>
<td>8-1</td>
</tr>
<tr>
<td></td>
<td>Fuse Replacement</td>
<td>8-1</td>
</tr>
<tr>
<td></td>
<td>• 590H Product (Regenerative)</td>
<td>8-1</td>
</tr>
<tr>
<td></td>
<td>• 591H Product (Non-Regenerative)</td>
<td>8-3</td>
</tr>
<tr>
<td></td>
<td>Phase Assembly Removal</td>
<td>8-4</td>
</tr>
<tr>
<td></td>
<td>Phase Assembly Replacement</td>
<td>8-5</td>
</tr>
<tr>
<td></td>
<td>Top Baffle Setting</td>
<td>8-6</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>CONTROL LOOPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refer to the Product Manual</td>
<td></td>
</tr>
<tr>
<td>Chapter 7</td>
<td>PARAMETER SPECIFICATION TABLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refer to the Product Manual</td>
<td></td>
</tr>
<tr>
<td>Chapter 11</td>
<td>TECHNICAL SPECIFICATIONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environmental Details</td>
<td>11-1</td>
</tr>
<tr>
<td></td>
<td>AC Line Choke</td>
<td>11-1</td>
</tr>
<tr>
<td></td>
<td>External Fuses and Recommended Wire Sizes</td>
<td>11-2</td>
</tr>
<tr>
<td></td>
<td>Internal Fuses</td>
<td>11-2</td>
</tr>
<tr>
<td></td>
<td>Earthing/Safety Details</td>
<td>11-2</td>
</tr>
<tr>
<td></td>
<td>Electrical Ratings</td>
<td>11-3</td>
</tr>
<tr>
<td></td>
<td>3-Phase Power Supply Details</td>
<td>11-3</td>
</tr>
<tr>
<td></td>
<td>Fixing Types and Torques</td>
<td>11-3</td>
</tr>
<tr>
<td></td>
<td>Spares Available</td>
<td>11-4</td>
</tr>
<tr>
<td></td>
<td>Terminal Information</td>
<td>11-5</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>CERTIFICATION FOR THE CONVERTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EC Declaration of Conformity (Low Voltage Directive)</td>
<td>12-1</td>
</tr>
<tr>
<td></td>
<td>Manufacturer’s Declaration</td>
<td>12-2</td>
</tr>
<tr>
<td></td>
<td>Manufacturer’s EMC Declaration</td>
<td>12-3</td>
</tr>
<tr>
<td>Chapter 13</td>
<td>STANDARD AND OPTIONAL EQUIPMENT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refer to the Product Manual</td>
<td></td>
</tr>
<tr>
<td>Chapter 14</td>
<td>SERIAL COMMUNICATIONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refer to the Product Manual</td>
<td></td>
</tr>
<tr>
<td>Chapter 15</td>
<td>THE DEFAULT APPLICATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refer to the Product Manual</td>
<td></td>
</tr>
</tbody>
</table>
The 590H and 591H (Digital, Link and Analog) are the high power frame sizes of Eurotherm Drives’ 590 Series DC Converters.

There are two products: 4Q regenerative 590H, and 2Q non-regenerative 591H. Each has a total of 8 build standards; 4 current breaks and 2 voltage breaks.

Standard Equipment

The following equipment is supplied as standard with each controller:

- Lifting brackets
- Fan assembly
- Fan ducting
- M12 bolts, nuts and washers (quantity 34)
- Product Manual and Addendum

Optional Equipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC Installation Guidelines for Modules and Systems</td>
<td>HA388879</td>
</tr>
<tr>
<td>A Eurotherm Drives application manual detailing EMC requirements</td>
<td></td>
</tr>
<tr>
<td>ConfigEd Lite</td>
<td>Order by name</td>
</tr>
<tr>
<td>Eurotherm Drives’ Windows-based block programming software</td>
<td></td>
</tr>
</tbody>
</table>

Table 1-1 Optional Equipment

Equipment Inspection and Storage

- Check for signs of transit damage
- Check the product code on the rating label conforms to your requirement.

If the unit is not being installed immediately, store the unit in a well-ventilated place away from high temperatures, humidity, dust, or metal particles.

Refer to Chapter 2: “An Overview of the Converter” to check the rating label/product code.

Refer to Chapter 5: “Routine Maintenance and Repair” for information on returning damaged goods.

Refer to Chapter 6: “Technical Specifications” - Environmental Details for the storage temperature.

About this Manual

This manual is intended for use by the installer, user and programmer of the 590 Converter. It assumes a reasonable level of understanding in these three disciplines.

Note: Please read all Safety Information before proceeding with the installation and operation of this unit.

This manual is the Addendum to the following manuals:

- 590 Series DC Digital Converter - Product Manual
- 590 Series DC Analog Converter - Product Manual
- 590 Series DC Link Converter - Product Manual
Each 590H/591H is shipped with this Addendum and a copy of the appropriate Product Manual. Refer to the Product Manual for details of the following:

- commissioning procedures
- safety information
- control specification
- software configuration
- diagnostics
- fault finding
- application information

How the Manual is Organised

Text in this Addendum is either in addition to, or is a replacement for equivalent text found in the Product Manual.
An Overview of the Converter

Component Identification

Figure 2-1 View of Component Parts
An Overview of the Converter

Understanding the Product Code

The 590H unit is fully identified using an alphanumeric code which records how the Converter was calibrated, and its various settings when despatched from the factory.

The Product Code appears as the “Model No.”. Each block of the Product Code is identified in the Product Manual, however, the following blocks are substituted for the 590H types:

<table>
<thead>
<tr>
<th>Block No.</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>XXXX</td>
<td>Five digits identifying the basic product:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-phase 4Q Regenerative 3-phase 2Q Non-Regenerative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>590HD Digital 591HD Digital</td>
</tr>
<tr>
<td></td>
<td></td>
<td>590HL Link 591HL Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>590HA Analog 591HA Analog</td>
</tr>
<tr>
<td>2</td>
<td>XXXX</td>
<td>Five numbers identifying the maximum dc output current rating that may be calibrated for each size of product:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12000 -1200A, 17000 -1700A, 22000 -2200A, 27000 -2700A</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>1 digit identifying the nominal 3 phase ac power, supply voltage:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = 380V 6 = 415V 7 = 440V 8 = 460V 9 = 480V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A = 500V B = 550V C = 600V D = 660V E = 690V</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>1 digit identifying the auxiliary ac control supply voltage and fan voltage:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = 110V 1 = 115V 2 = Unused 3 = 220V 4 = 240V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>590HD Digital and 590HL Link</th>
<th>590HA Analog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block No.</td>
<td>Variable</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>XX</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>XXX</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INSTALLING THE CONVERTER

Mechanical Installation

Unpacking the Converter

Caution

The packaging is combustible and, if disposed of in this manner incorrectly, may lead to the generation of lethal toxic fumes.

Save the packaging in case of return. Improper packaging can result in transit damage.

The 590H/591H converter is supplied in special packaging to protect the drive whilst in transit. Remove all fixings from the drive, see Figure 3-1. (The packaging is designed so that the sides can be removed to reveal the drive).

Figure 3-1 Lifting Details
Installing the Converter

Lifting the Converter

Use a safe and suitable lifting procedure when moving the drive. Never lift the drive by its terminal connections.

- The drive is supplied with a lifting bracket fitted to each corner for hoisting. Remove the brackets when the drive is in its final position, however, the fixings MUST be re-fitted. Refer to Chapter 11: “Technical Specifications” - Fixing Types and Torques.

- A plate is fitted to the base to enable the drive to be set-on-end by a forklift. Remove the plate before wiring the power terminals.

Prepare a clear, flat surface to receive the drive before attempting to move it. Do not damage any terminal connections when putting the drive down.

Weight

590H drive weighs 270Kg without packaging and fan assembly
591H drive weighs 160Kg without packaging and fan assembly

Fan weighs 18.5Kg.

Mounting the Converter

Refer to the Installation Drawings.

Mount the unit vertically on a solid, flat, vertical surface. It is mounted using bolts or screws into the fixing points (keyhole slots). Refer to Chapter 11: “Technical Specifications” - Fixing Types and Torques.

It must be mounted inside a suitable cubicle. To comply with the European safety standards VDE0160 (1994)/EN50178 (1998), the cubicle must require a tool for opening.

<table>
<thead>
<tr>
<th>Current Rating (A)</th>
<th>Model</th>
<th>Overall Dimensions</th>
<th>Fixing Centres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>950 - 2700</td>
<td>590H</td>
<td>850</td>
<td>1406 *</td>
</tr>
<tr>
<td>950 - 2700</td>
<td>591H</td>
<td>850</td>
<td>956 *</td>
</tr>
</tbody>
</table>

* For top mounted fan, B = +133

Dimensions are in millimetres

Ventilation and Cooling Requirements

Refer to Chapter 11: “Technical Specifications” - Environmental Details. (For operation above the quoted temperature, derating of the converter may be necessary. Refer to Eurotherm Drives for further information.)

The drive is force-cooled using the fan units supplied with the drive.

The Converter gives off heat in normal operation and must therefore be mounted to allow the free flow of air through the air entries and exits. Maintain the minimum air clearances (as a general rule allow at least 150mm (6 inches) of clear space above and below the drive for free air flow) to ensure that heat generated by other adjacent equipment is not transmitted to the Converter, be aware that other equipment may have its own clearance requirements. When mounting two or more 590 Series Converters together, these clearances are cumulative.

We suggest the cubicle has an air inlet at the base of the cubicle equivalent to 4ft², variable depending upon the filter type used, to allow the maximum throughput of air.
Installing the Fan
The fan unit supplied should be installed on the cubicle, with or without ducting (refer to the Installation Drawing). For wiring details refer to “Fan Wiring” page 3-8.

AC Line Choke
We recommend that you always use the specified ac line choke with the Converter to provide a known supply impedance for effective operation of the thyristor transient suppression circuits.

At least 2% line impedance should be provided in the supply side of the converter. For recommended AC line chokes refer to Chapter 11: “Technical Specifications” - AC Line Choke.

Changing DC Output Terminals
- Remove the left-hand cover plate(s) and retain the cover and screws.
- Remove and retain the 12 M6 nuts clamping the outgoing terminals to the cross plates.
- Remove the 12 M6 bolts securing the outgoing busbar assembly (assemblies). Remove the assembly (assemblies).
- Carefully remove the gasket(s) for use on the left-hand side.
- Refit the cover to the right-hand side of the drive.
- Refit the gasket to the left-hand side of the drive.
- Refit the terminal assemblies.

Note: The 2Q terminal assembly is not polarised and may be fitted in any orientation. The 4Q terminal assemblies are handed and must be reversed to fit on the left-hand side.

- Move the terminal markers as appropriate, the A+ terminal will still be at the bottom or AC input at the end of the product.
- Tighten terminal assembly bolts to the torque given on page 11-3.

Electrical Installation

IMPORTANT: Please read the Safety Information on pages Cont. 3 and 4 before proceeding.

WARNING!
Ensure that all wiring is electrically isolated and cannot be made “live” unintentionally by other personnel.

Cables are considered to be electrically sensitive, clean or noisy. You should already have planned your cable routes with respect to segregating these cables for EMC compliance. If not, refer to the Product Manual.

Figure 3-2 Cabling Requirements
3-4 Installing the Converter

Minimum Connection Requirements

Note: Because of the complexity of showing all possible configurations, this Chapter deals only with a ‘general purpose’ operation as a basic speed controller. Special wiring options usually form part of a customer-specific system and connection details will be provided separately.

The minimum connection requirements for operating the Converter are highlighted in the following text with the symbol opposite.

The Converter is using the default Armature Voltage feedback when following the ‘minimum connections’ instructions.

Figure 3-3 Minimum Connection Requirements (‘general purpose’ configuration)

IMPORTANT: Indicator lamps, annunciators, etc., for "Drive On" condition should be switched by an auxiliary contactor of the main contactor, not by the controller auxiliary relay.

To avoid damaging the drive NEVER carry out high voltage resistance or dielectric strength tests without first completely disconnecting the drive from the circuit being tested.

- Power connections must have a minimum rating of 1.1 x full load current. (1.25 x FLC when required to comply with UL requirements).

- All incoming main AC power supply connections must be protected with high speed semiconductor fuses. Refer to Chapter 11: “Technical Specifications” for fuse information.

- The External AC Supply EMC Filter must only be fitted on the mains side of the contactor.
Protective Earth Connections (PE)

This information is provided in full, without need for reference to the Product Manual.

IMPORTANT: The Converter must be permanently earthed. Each conductor used for permanent earthing (refer to Figure 2-1) must individually meet the requirements for a protective earth conductor (refer to Chapter 11: “Technical Specifications” - Earthing/Safety Details).

For installations to EN 60204 in Europe:

- For permanent earthing, the converter requires one conductor (≥10mm² cross-section) connected to an independent protective earth/ground point near the drive.

- Run the motor protective earth/ground connection in parallel with the motor supply conductors, ideally in the same conduit/screen/armour, and connect to an independent protective earth/ground point near the drive.

- Connect the drive to the independent earth/ground point.

590D - Refer to Product Manual, Chapter 12: “Certification for the Converter” - Screening & Earthing (cubicle mounted, Class B).

Refer to Figure 2-1 and Chapter 11: “Technical Specifications” - External Fuses and Recommended Wire Sizes.
Power Wiring Connections
This information is provided in full, without need for reference to the Product Manual.

WARNING!
The power terminals carry electrical voltage which can be lethal. Never work on any control equipment or motors without first removing all power supplies from the equipment and allow to discharge for 3 minutes.

3-Phase Contactor (D5, D6)
A 3-phase contactor should be connected in the main ac power supply connections with a rating suitable (AC1) for the controller concerned. The contactor does not switch current and is primarily for disconnection and sequencing of the power bridge. The main contactor must be energised directly from the controller by connecting the coil to terminals D5 (Line) and D6 (Neutral). No additional series contacts or switches are permitted since they will interfere with the sequencing of the controller and cause unreliability and possible failure.

Note: A slave relay must be used to drive the contactor coil. The contactor and slave relay must have coil voltages compatible with the controller auxiliary supply voltage.

A dc contactor can be used but the sequencing must be adjusted to accommodate its use, an auxiliary normally open volt-free contact of the contactor must be connected in series with the "enable" input C5 to disable the drive until after the contactor is closed.

3-Phase Supply, AC Line Choke (L1, L2, L3)
Refer to Figure 3-3.
The main ac power is connected to busbar terminals L1, L2 and L3, there is no specific phase connection to these three terminals as the controller is phase rotation independent. The connections must be made via the main contactor and the ac line choke.

High speed, semi-conductor fuses are provided in the unit to protect the thyristor stack in case of direct output short circuits. You should provide suitable branch protection fuses to protect cabling.

Fit a 3-phase ac line choke in series with the incoming main 3-phase ac power supply. (Eurotherm Drives can provide suitable choke for this duty, mechanically designed to connect directly to the controller ac supply terminals.) The choke should be connected between the controller and the ac contactor for optimum protection and safety.

The choice of ac or dc contactors is a user preference. Eurotherm Drives prefer ac contactors as they isolate the converter and motor when not in use. The only restriction on the use of a dc contactor is that an interlocking contact should be provided into the Enable input.
Auxiliary Supply (L, N)

Connect the auxiliary supply (single phase 50/60Hz) to terminals L (Line) and N (Neutral) with suitable external fuse protection. The steady state current absorbed by the controller is nominal, the external fuse is determined chiefly by considering the contactor holding VA and the controller cooling fans.

Note: The auxiliary supply must be connected directly to the incoming supply, no series sequencing switches or contacts are permitted without consultation with Eurotherm Drives.

Field (F-, F+)

Connect the motor field (-) to terminal F- and field (+) to terminal F+. If the motor has no field connections, is a permanent magnet motor, or if the field is derived externally, you must inhibit the FIELD ENABLE parameter. Refer also to “Fuse Rating and Recommended Wire Sizes”, page 11-2.

Motor Armature (A+, A-)

The motor armature is connected to busbar terminals A+ and A-. If a DC contactor is used the poles should be interposed between the controller terminals and the motor terminals.

The maximum cable length is 1km.

When the controller is operating in a regenerating mode for extended periods acting as a load generator for another machine, it is advisable to fit additional protection in the armature circuit. A DC fuse or a high speed circuit breaker will provide this protection, if in doubt consult the Eurotherm Drives Engineering Department.

External AC Field (FL1, FL2)

An external field supply is required to the controller under all circumstances. Connect this supply to terminals FL1 and FL2. The magnitude of this voltage is determined by the desired field voltage. The supply must be protected externally with suitable fuses. Always derive the supply from the Red and Yellow phases of the main power supply, with the Red phase connected to terminal FL1 and the Yellow phase connected to FL2.

IMPORTANT: It is important that connection of the controller and the external field supply is consistent when using an externally supplied field regulator. The supply must be derived from L1 (Red) and L2 (Yellow) phases directly or indirectly through a transformer. L1 must be connected to FL1, and L2 connected to FL2.

External Armature Volts

External Armature Volts can be used where a more sensitive reading of terminal volts is required. When required the terminal MVA+ should be wired to the Motor A+ terminal and MVA- should be wired to Motor A- terminal via suitable fuses.
Control Wiring Connections
For all connection requirements refer to the Product Manual.

Removing the Cover
The cover is manufactured from sheet metal and weighs:-
- 2Q Non-Regenerative = 10kg
- 4Q Regenerative = 15kg

To remove the cover use a flat headed screwdriver to undo the two screws at the base of the cover.

Now lift the cover base outwards and upwards, once the cover has been raised two centimetres it can now be removed.

To replace the cover follow the procedure in reverse, engaging the locating studs at the top, moving into final location and tightening fixing screws.

Fan Wiring
The fan assembly provided is permanently wired as shown below.

Refer to Chapter 11: “Technical Specifications” - Power Supply Details for fan ratings

Figure 3-4 Fan Wiring Diagram
Figure 3-2 590, Regenerative DC Drive Outline 1200 - 2700 Amp, Internally Fitted Cooling Fan
Figure 3-3 590, Regenerative DC Drive Outline 1200 - 2700 Amp, Cubicle Roof Mounted Cooling Fan
Figure 3-4 591, Non Regenerative DC Drive Outline 1200 - 2700 Amp, Internally Fitted Cooling Fan
Figure 3-5 504, Non Regenerative DC Drive Outline 1200 - 2700 Amp, Cubicle Roof Mounted Cooling Fan

- Fans connected to drive via 2 x 18D flexible ducts <600 long.
- Location for supply self adhesive foam gasket strips may be applied to fan housing or cubicle top.
- Lifting brackets may be removed after mounting in cubicle to improve access.

10. Fans shown located directly over drive outlet flanges. Fan assembly may be offset relative to drive as long as flexible hose isn't collapsed.
Operating the Converter 4-1

OPERATING THE CONVERTER

Setting-up the Converter

The following instructions are written in logical order and replace the “Calibration” details given in the Product Manual.

Complete each stage successfully before progressing to the next.

Calibration

NO POWER IS CONNECTED AT THIS STAGE

With the cover removed, you must first calibrate the Converter for use with the motor.

To access the power board, unscrew the two fixings on the right hand side of the control door. Open the door to reveal the power board.

Calibration of the drive is a two stage process:

1. set the calibration switches on the power board
2. calibrate the control door

![Power Board Calibration Switches](image)

Armature Calibration

500A stages

Field Current Calibration

Range

<table>
<thead>
<tr>
<th>Multiplier</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>up to 20A</td>
</tr>
<tr>
<td>1</td>
<td>up to 40A</td>
</tr>
<tr>
<td>2</td>
<td>up to 60A</td>
</tr>
<tr>
<td>3</td>
<td>up to 80A</td>
</tr>
</tbody>
</table>

Field Current Calibration

<table>
<thead>
<tr>
<th>Multiplier</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>up to 20A</td>
</tr>
<tr>
<td>1</td>
<td>up to 40A</td>
</tr>
<tr>
<td>2</td>
<td>up to 60A</td>
</tr>
<tr>
<td>3</td>
<td>up to 80A</td>
</tr>
</tbody>
</table>

Field Current Calibration (not available on standard build)

Armature Voltage Calibration

OFF = VA / 100 (for VA up to 525V)

ON = VA / 200 (for VA greater than 525V)

Figure 4-1 Calibration Switches

Armature Current (IA CAL)

1. Set switches 1 to 6 to give the required output current to the nearest 500A step. (Each one switches in a parallel resistor, so any of the six switches can be used).

2. Set the remainder of the required current level on the control board (door).

Example

Required current is 1750A:

- Set the power board calibration switches 1 to 3 to ON to give a basic calibration of 1500 Amps.
- Set the Armature Current (IA CAL) calibration switches on the control board to 250A using SW1, SW2 and SW3.

Final calibration:

1500	on power board
250	on control board
1750	calibrated current

590H Series DC Converter
Operating the Converter

Field Current (IF CAL)

1. Set the power board calibration switches 8 and 9 to give the required field current range.
2. **Divide** the required field current setting by the value of the associated Multiplier to obtain a calculated field current setting. Refer to Figure 4-1 for the Range and associated Multiplier values.
3. Set the Field Current (IF CAL) calibration switches on the control board to the value of the calculated field current using SW4, SW5 and SW6.

Example

Required field current is 37A:

- Set switches 8 and 9 for up to 40A (Multiplier is x2)
- Calculate the field current setting: \(\frac{37.0}{2} = 18.5 \) A

- Set the Field Current (IF CAL) calibration switches on the control board to 18.5A

Note: When using the 590H/591H Analog product, **field current cannot be controlled. However, the field current calibration switches on the power board should be set to a suitable range for the motor field current required.**

Armature Voltage (VA CAL)

Refer to the Product Manual for the Armature Voltage table (590D - Product Manual, Chapter 4: “Operating the Converter” - Calibration).

1. For armature voltages less than 525V dc set switch 10 to OFF.
2. For armature voltage greater than 525V dc set switch 10 to ON. The armature voltage calibration is now doubled, i.e. for a 750V dc armature, divide the voltage by 2 giving 375V dc. set the Armature Voltage (VA CAL) 4-way switch SW7 on the control board to the 375V dc range. Adjust final armature voltage trim accordingly.

Note: When using the 590H/591H Analog product, **armature voltage calibration is not required. However, setting switch 10 (and SW7 where necessary) to accommodate final armature voltage is recommended to keep the control circuits in their operating range.**

Refer to the Product Manual instructions to continue setting-up the Converter.
Routine Maintenance and Repair 8-1

Routine Maintenance

Refer to the Product Manual.

Repair

Refer to the Product Manual.

Fuse Replacement

1. Remove the front cover.
2. Unplug the ribbon cables to the trigger boards.
3. Open the swing-frame using the two quick-release fixings at the right hand end.

590H 4Q Product (Regenerative)

Figure 8-1 590H Fuse Replacement Diagram
Routine Maintenance and Repair

IMPORTANT: When re-assembling the unit, apply a ‘zinc-loaded’ jointing compound between the fuses and busbars, and between the busbars and phase assemblies (BICC BX1 - Eurotherm Part No. EA466241)

Observe all tightening torque levels, refer to Chapter 11: “Technical Specifications” - Fixing Types and Torques.

Bench-Top Replacement Procedure

1. Disconnect the relevant fuse microswitch assembly by unplugging the lead assembly from the rear trunking.
2. Remove the M12 (A).
3. Loosen (but do not remove) the four M10 screws (B, C, D, E).
4. Hold the fuse assembly handle in one hand and remove the two screws (D, E) from the lower phase assembly.

CAUTION: The fuse assembly weighs 9kg maximum.

5. Hold the fuse assembly handles and remove the two screws (B, C) from the upper phase assembly.
6. With the fuse assembly on the bench, remove the M12 screws (F, G, H, I) holding the fuses to the busbars. Take a note of the fuse microswitch position on the fuse assembly, do not forget, as the lead assembly will not fit if mounted in the wrong position.

Reverse the above procedure for replacement. Remember to re-connect the fuse microswitches.

In-Situ Replacement Procedure

1. Disconnect the relevant fuse microswitch assembly by unplugging the lead assembly from the rear trunking.
2. Remove the M12 screw (A), and the 4 screws (F, G, H, I). Remove the CT plate and handles.
3. Remove the relevant screws (B, C or D, E) and lift the fuse busbar assembly from the phase assembly.
4. Replace the fuse on the busbar and re-connect the microswitch. Fully tighten the fuse to the busbar.
5. Fit the fuse busbar assembly on to the phase assembly. Don’t fully tighten the screws yet.
6. Position the CT plate on top of the fuses. The slack in the fuse busbar assembly will allow the fixing holes to be aligned. Insert the screws.
7. Fully tighten all screws (including those in 5 above).
8. Re-connect the fuse microswitches.
591H 2Q Product (Non-Regenerative)

![Diagram of 591H Fuse Replacement](image)

Figure 8-2 591H Fuse Replacement Diagram

IMPORTANT: When re-assembling the unit, apply a ‘zinc-loaded’ jointing compound between the fuses and busbars, and between the busbars and phase assemblies (BICC BX1 - Eurotherm Part No. EA466241)

Observe all tightening torque levels, refer to Chapter 11: “Technical Specifications” - Fixing Types and Torques.

Bench-Top Replacement Procedure

Working on the relevant fuse assemblies:

1. Remove the M12 screw (A).
2. Release the two M12 screws (B, C) and remove the CT plate.
3. Remove the two M10 screws (D, E) fixing the fuse assembly to the phase assembly.
4. On the bench, replace the relevant fuse on the fuse assembly.
5. Reverse the procedure for re-fitting.
Phase Assembly Replacement

Figure 8-3 Front View of Phase Assemblies

IMPORTANT: When re-assembling the unit, apply a `zinc-loaded` jointing compound between the fuses and busbars, between the busbars and phase assemblies and between the interconnection plates and the heatsink (BICC BX1 - Eurotherm Part No. EA466241)

Observe all tightening torque levels, refer to Chapter 11: “Technical Specifications” - Fixing Types and Torques.

Phase Assembly

- Dummy Board *(one only shown for clarity)*
- Stack of interconnecting plates
- Trigger Board *(one only shown for clarity)*

- Busbar

Phase Assembly

- Thyristor Suppression Board *(one only shown for clarity)*
- Stack of interconnecting plates
- Trigger Board *(one only shown for clarity)*

- Busbar

Note: The upper phase assemblies are only shown.
Phase Assembly Removal Procedure

1. Referring to Figure 5-1 (590H) or Figure 5-2 (591H), remove the M12 screw (A). Undo the four screws (B, C, D, E) which allows the CT plate and fuse assembly to be removed.

2. Unplug the thyristor gate leads and the heatsink overtemperature leads from the relevant phase assembly trigger board. Remove the same leads from the adjacent phase assembly or assemblies (this is necessary to gain complete access to the interconnecting plates.) If you are removing the phase assembly from a 591H (2Q) product, also disconnect the thyristor suppression lead from the trigger boards.

3. Remove the trigger board by releasing the four M6 Sems nuts fixing the PCB to the assembly. If you are working on a 590H (4Q), remove the dummy trigger board, or if working on a 591H (2Q) remove the thyristor suppression board. Remove the air duct from the top of the phase assembly to gain access to the DC interconnection plates. Do not remove the trigger board support spacers.

4. Remove the DC interconnection plates between the phase assembly and its adjacent assemblies, either output terminals or phase assemblies.

5. If changing an upper phase assembly on a 590H or 591H remove the top baffle. This is achieved by pushing out the two end flaps of the plenum chamber and unclipping the top baffle from the top cover baffle stops and the top of the phase assemblies. Remove the vertical baffles between phase assemblies.

6. If changing a lower phase assembly on a 590H, remove the lower air duct.

7. Remove the complete phase assembly by removing the four M6 Sems nuts at the top and bottom of the phase assembly.

Note: On the 591H 2Q, the left hand screw retains the phase coding connection which should be pushed to one side before lifting the phase assembly.

Phase Assembly Fitting Procedure

1. Position the repaired or spare phase assembly on to the back panel spacer. (Remember to re-connect the coding lead to the bottom of the phase assembly when working on a 591H 2Q).

Check for correct orientation of the assembly. Fix in position with 4 x M6 Sems nuts and tighten to the correct torque level.

Refit the interconnecting plate stacks between the phase assemblies. A stack of three plates are used on a 1200 Amp unit, four on a 1700 Amp unit, five on a 2200 Amp unit and six on a 2700 Amp unit. On a 4Q unit the plates interconnect both the upper and lower thyristors and adjacent phase assemblies. On the 2Q unit the plates interconnect adjacent phase assemblies. Tighten to the correct torque level.

Note:

a) When fitting a spare phase assembly there may be some misalignment to the new phase where the interconnection plates do not fit easily. In this case, loosen the trigger support spacers which will allow adjustment of the support bars. Fit the interconnecting plates and re-tighten all units, including spacers.

b) When re-assembling the interconnection plates it is important that a good electrical contact is made between the plates and the aluminium heatsink. Apply a layer of ‘zinc-loaded’ jointing compound between the interconnection plates and the heatsink.

3. Refit the air duct on the phase assembly ensuring that the duct fits inside the side ducting of the phase assembly.

4. Refit the trigger board (thyristor suppression board or dummy board as appropriate) and secure with the M6 Sems nuts.

5. Reconnect the gate leads, thermostat and suppression lead as necessary. The gate leads cannot be fitted incorrectly as they are polarised by the plugs.

6. Re-fit the top baffle (either plenum cover or lower 4Q air duct) and vertical baffles.

7. Replace the fuse.

8. Re-close the swing-frame.

9. Replace the trigger board connectors.
The top baffle must be positioned according to the table below. Clip the baffle into position, matching the slots at the bottom of the baffle to rest on the plastic covers of each phase assembly. Press the baffle into the top of the unit until it snaps into place, positions T or B, against the baffle stops. Maneuvre the baffle into the correct position.

<table>
<thead>
<tr>
<th>Position to Engage Baffle</th>
<th>1200A LV</th>
<th>1700A HV</th>
<th>2200A LV</th>
<th>2200A HV</th>
<th>2700A LV</th>
<th>2700A HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Top Clip Position</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Bottom Clip Position</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Environmental Details

<table>
<thead>
<tr>
<th>Operating Temperature</th>
<th>0°C to +40°C (see the “Electrical Ratings” table) Operating temperature is defined as the ambient temperature to the immediate surround of the Converter, when the Converter and other equipment adjacent to it is operating at worst case conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>-25°C to +55°C</td>
</tr>
<tr>
<td>Shipping Temperature</td>
<td>-25°C to +70 °C</td>
</tr>
<tr>
<td>Product Enclosure Rating</td>
<td>Cubicle Mounted</td>
</tr>
<tr>
<td>Altitude</td>
<td>If >500 metres above sea level, derate Motor Power rating by 1% per 200 metres to a maximum of 5,000 metres</td>
</tr>
<tr>
<td>Humidity</td>
<td>Maximum 85% relative humidity at 40°C non-condensing</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>Non flammable, non corrosive and dust free</td>
</tr>
<tr>
<td>Climatic Conditions</td>
<td>Class 3k3, as defined by EN60721-3-3 (1995)</td>
</tr>
</tbody>
</table>

Safety

<table>
<thead>
<tr>
<th>Overvoltage Category</th>
<th>Overvoltage Category III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollution Degree</td>
<td>Pollution Degree 2</td>
</tr>
<tr>
<td>Europe</td>
<td>EN50178 (1998), when fitted inside a cubicle</td>
</tr>
</tbody>
</table>

AC Line Choke

AC Line Choke @ 2% line impedance.

<table>
<thead>
<tr>
<th>Code</th>
<th>DC Rating</th>
<th>AC Current</th>
<th>Inductance</th>
<th>Eurotherm Drives Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>1200</td>
<td>LV 1080A</td>
<td>15μH</td>
<td>CO466250U012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HV 1080A</td>
<td>20μH</td>
<td>CO466250U012</td>
</tr>
<tr>
<td>1700</td>
<td>1700</td>
<td>LV 1620A</td>
<td>10μH</td>
<td>CO466250U017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HV 1620A</td>
<td>15μH</td>
<td>CO466250U017</td>
</tr>
<tr>
<td>2200</td>
<td>2200</td>
<td>LV 1980A</td>
<td>10μH</td>
<td>CO466250U022</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HV 1980A</td>
<td>15μH</td>
<td>CO466250U022</td>
</tr>
<tr>
<td>2700</td>
<td>2700</td>
<td>LV 2520A</td>
<td>7.5μH</td>
<td>CO466250U027</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HV 2520A</td>
<td>10μH</td>
<td>CO466250U027</td>
</tr>
</tbody>
</table>
External Fuses and Recommended Wire Sizes

Local wiring regulations always take precedence.

<table>
<thead>
<tr>
<th>Description</th>
<th>Drive Size</th>
<th>Input Current (A)</th>
<th>* European Copper Busbar Size (40°C) (dim in mm)</th>
<th>+ North American Wire Size (kc mil)</th>
<th>Output Current (A)</th>
<th>* European Copper Busbar Size (40°C) (dim in mm)</th>
<th>+ North American Wire Size (kc mil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Power</td>
<td>1200</td>
<td>1100</td>
<td>1 off 60 x 10</td>
<td>500 * 4</td>
<td>1200</td>
<td>1 off 60 x 10</td>
<td>500 * 4</td>
</tr>
<tr>
<td></td>
<td>1700</td>
<td>1550</td>
<td>2 off 40 x 10</td>
<td>400 * 6</td>
<td>1700</td>
<td>2 off 50 x 10</td>
<td>500 * 6</td>
</tr>
<tr>
<td></td>
<td>2200</td>
<td>2000</td>
<td>2 off 50 x 10</td>
<td>600 * 6</td>
<td>2200</td>
<td>2 off 60 x 10</td>
<td>700 * 6</td>
</tr>
<tr>
<td></td>
<td>2700</td>
<td>2450</td>
<td>2 off 60 x 10</td>
<td>900 * 6</td>
<td>2700</td>
<td>3 off 50 x 10</td>
<td>700 * 8</td>
</tr>
<tr>
<td>Field</td>
<td>60</td>
<td>60</td>
<td>AWG 8</td>
<td></td>
<td>60</td>
<td>AWG 8</td>
<td></td>
</tr>
</tbody>
</table>

Internal Fuses

Information provided on internally fitted for the 590H and 591H.

<table>
<thead>
<tr>
<th>Product Code</th>
<th>591H</th>
<th>590H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuse Rating</td>
<td>Eurotherm Drives Part No.</td>
<td>Fuse Rating</td>
</tr>
<tr>
<td>12000</td>
<td>500A</td>
<td>CS466260U050</td>
</tr>
<tr>
<td>17000</td>
<td>800A</td>
<td>CS466260U080</td>
</tr>
<tr>
<td>22000</td>
<td>100A</td>
<td>CS466260U100</td>
</tr>
<tr>
<td>27000</td>
<td>1250A</td>
<td>CS466260U125</td>
</tr>
</tbody>
</table>

Earthing/Safety Details

Earthing

Permanent earthing is mandatory on all units because the earth leakage current exceeds 3.5mA ac/10mA dc under normal operating conditions.

Permanent earthing must be provided through an earth conductor with a cross sectional area of not less than half that of the supply conductors.

Note: Each conductor itself must meet the local requirements for a protective earth conductor.

Input Supply Details (TN) and (IT)

Units are suitable for use on earth referenced (TN) and non-earth referenced (IT) supplies.

Prospective Short Circuit Current (PSCC)

100kA maximum

Earth Leakage Current

>50mA (all models)
Electrical Ratings
For operating temperatures in the range 0°C to +40°C.

<table>
<thead>
<tr>
<th>Model</th>
<th>Max Supply Voltage (V) (LV/HV)</th>
<th>Continuous Max Output Current (armature, A)</th>
<th>Max Field Current Rating (A)</th>
<th>Overload Rating (max 100% armature current, A)</th>
<th>Approximate Power Loss (W @ 100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>590H & 591H</td>
<td>500/690</td>
<td>1200</td>
<td>60</td>
<td>1050</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>500/690</td>
<td>1700</td>
<td>60</td>
<td>1450</td>
<td>1250</td>
</tr>
<tr>
<td></td>
<td>500/690</td>
<td>2200</td>
<td>60</td>
<td>1950</td>
<td>1750</td>
</tr>
<tr>
<td></td>
<td>500/690</td>
<td>2700</td>
<td>60</td>
<td>2350</td>
<td>2150</td>
</tr>
</tbody>
</table>

Power Supply Details
Supply current is (0.9 x Idc) Amps ac rms.

- **Control Voltage**: 110/240V ±10%, Single phase, 45-65Hz
- **Power Supply Fusing**: Internal PSU/Fans/Contactor : 3A
- **3-Phase Supply**
 - **LV Build**: 500V rms max
 - **HV Build**: 690V rms max
- **Contactor Output**: 3A maximum @ Control Voltage
- **Fan Supply**: 110/120V ± 10% 50/60 Hz depends on wiring, refer to Chapter 3: “Installing the Converter” - Fan Wiring.
 - 220V/240V ± 10% 50/60Hz depends on wiring, refer to Chapter 3: “Installing the Converter” - Fan Wiring.
- **Fan Rating**: 115V ac 50Hz, 1.67A, 177W, 2750 rpm, motor run capacitor 18µF
 - 115V ac 60Hz, 2.21A, 240W, 2660 rpm, motor run capacitor 18µF

Fixing Types and Torques

<table>
<thead>
<tr>
<th>Description</th>
<th>Fixing Size</th>
<th>Spanner Size</th>
<th>Format</th>
<th>Torque Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Mounting Fixings</td>
<td>M12</td>
<td>19mm</td>
<td>Bolt</td>
<td>57.2</td>
</tr>
<tr>
<td>Earth studs on back panel</td>
<td>M10</td>
<td>17mm</td>
<td>Nut</td>
<td>32.8</td>
</tr>
<tr>
<td>Fuse assy to Phase assy</td>
<td>M10</td>
<td>17mm</td>
<td>Bolt</td>
<td>24</td>
</tr>
<tr>
<td>AC Input & DC Output Bus bars</td>
<td>M12</td>
<td>19mm</td>
<td>Nut & Bolt</td>
<td>57.2</td>
</tr>
<tr>
<td>Fuse assembly</td>
<td>M12</td>
<td>19mm</td>
<td>Bolt</td>
<td>42</td>
</tr>
<tr>
<td>Fuse assembly to CT</td>
<td>M12</td>
<td>19mm</td>
<td>Bolt</td>
<td>42</td>
</tr>
<tr>
<td>DC Output terminal panel to side panel</td>
<td>M6</td>
<td>10mm</td>
<td>Bolt</td>
<td>6.8</td>
</tr>
<tr>
<td>DC Bus bars</td>
<td>M6</td>
<td>10mm</td>
<td>Nut</td>
<td>6.8</td>
</tr>
<tr>
<td>I/P terminal assy</td>
<td>M6</td>
<td>10mm</td>
<td>Nut</td>
<td>4</td>
</tr>
<tr>
<td>Lifting Bracket Fixings</td>
<td>M10</td>
<td>17mm</td>
<td>Bolt</td>
<td>24</td>
</tr>
</tbody>
</table>
Spares Available

Figures in brackets give the number required per drive.

<table>
<thead>
<tr>
<th>Phase Assembly Order Code</th>
<th>DC Rating</th>
<th>Eurotherm Drives Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Phase Assembly</td>
</tr>
<tr>
<td>12000</td>
<td>LV</td>
<td>LA466059U012</td>
</tr>
<tr>
<td></td>
<td>HV</td>
<td>LA466059U112</td>
</tr>
<tr>
<td>17000</td>
<td>LV</td>
<td>LA466059U017</td>
</tr>
<tr>
<td></td>
<td>HV</td>
<td>LA466059U117</td>
</tr>
<tr>
<td>22000</td>
<td>LV</td>
<td>LA466059U022</td>
</tr>
<tr>
<td></td>
<td>HV</td>
<td>LA466059U122</td>
</tr>
<tr>
<td>27000</td>
<td>LV</td>
<td>LA466059U027</td>
</tr>
<tr>
<td></td>
<td>HV</td>
<td>LA466059U127</td>
</tr>
</tbody>
</table>

Fan Assembly: LA466038

Field

<table>
<thead>
<tr>
<th>PCB Assy</th>
<th>590H</th>
<th>591H</th>
<th>Thyristor Mod.</th>
<th>590H</th>
<th>591H</th>
<th>Diode Mod.</th>
<th>590H</th>
<th>591H</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV</td>
<td>AH466002U001</td>
<td>AH466002U001</td>
<td>CF385524U016</td>
<td>CF385524U016</td>
<td>CW46432U016</td>
<td>CW46432U016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HV</td>
<td>AH466002U002</td>
<td>AH466002U001</td>
<td>CF385524U022</td>
<td>CF385524U022</td>
<td>CW46432U022</td>
<td>CW46432U022</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Common Parts

<table>
<thead>
<tr>
<th>Power PCB</th>
<th>VDRs (1 per Phase)</th>
<th>Cooling Fans (2 per Assy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>590H</td>
<td>591H</td>
<td>590H</td>
</tr>
<tr>
<td>590H</td>
<td>591H</td>
<td>590H</td>
</tr>
<tr>
<td>LV</td>
<td>AH466001U001</td>
<td>AH466001U001</td>
</tr>
<tr>
<td>HV</td>
<td>AH466001U001</td>
<td>AH466001U001</td>
</tr>
</tbody>
</table>

590H Series DC Converter
Technical Specifications

Terminal Information

<table>
<thead>
<tr>
<th>Terminal Description</th>
<th>Terminal Function</th>
<th>Terminal Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three phase supply</td>
<td>Drive supply</td>
<td>L1 - L3</td>
</tr>
<tr>
<td>Armature +</td>
<td>Drive output to motor armature</td>
<td>A+</td>
</tr>
<tr>
<td>Armature -</td>
<td>Drive output to motor armature</td>
<td>A-</td>
</tr>
<tr>
<td>External field supply (Red Phase)</td>
<td>External single phase ac Line 1 input to field bridge.</td>
<td>FL1</td>
</tr>
<tr>
<td>External field supply (Yellow Phase)</td>
<td>External single phase ac Line 2 input to field bridge.</td>
<td>FL2</td>
</tr>
<tr>
<td>Required AC Input Voltage = 1.11 x Nominal DC Output.</td>
<td>The field regulator will control the field current provided that the Nominal DC Output voltage exceeds the field voltage by at least 10%.</td>
<td></td>
</tr>
<tr>
<td>i.e.</td>
<td>[V_{AC} = 1.11 \times V_{DC}]</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>[V_{DC} = 1.1 \times V_{FIELD}]</td>
<td></td>
</tr>
<tr>
<td>therefore</td>
<td>[V_{AC} = 1.22 \times V_{FIELD}]</td>
<td></td>
</tr>
<tr>
<td>The external AC supply must be fitted with high speed fuses to protect the field regulator. For controllers with 10A field capability 10A fuses should be used, those with 20A field capability 20A fuses, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: When using an external AC input it is important to have the correct phase relationship on the terminals. The supply must be derived from L1 (Red) and L2 (Yellow) phases directly or indirectly through a transformer. L1 must be connected to D1, and L2 to D2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Output (DC+)</td>
<td>DC supply for motor field connections.</td>
<td>F+</td>
</tr>
<tr>
<td>Field Output (DC-)</td>
<td>DC supply for motor field connections.</td>
<td>F-</td>
</tr>
<tr>
<td>The DC output voltage at these terminals will depend upon the AC supply voltage and the mode of field control. Please refer to the Product Manual for details of the drive capability and operation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum drive field output capability is 60A DC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Armature Volts Sense (+)</td>
<td>This connection can be used if a more accurate value of armature voltage is required, for example a DC line choke may be fitted. This terminal should be connected directly to the positive motor armature terminal.</td>
<td>MVA+</td>
</tr>
<tr>
<td>External Armature Volts Sense (-)</td>
<td>This terminal should be connected directly to the negative motor armature terminal (see above).</td>
<td>MVA-</td>
</tr>
<tr>
<td>Auxiliary Supply Live 110-240V</td>
<td>These terminals are the mains input connections for control supply transformer and contactor relay supply</td>
<td>L</td>
</tr>
<tr>
<td>Auxiliary Supply Neutral</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Main contactor coil V AC</td>
<td>This terminal is internally connected to the auxiliary supply neutral and provides a convenient connection point for the contactor coil neutral connection</td>
<td>N</td>
</tr>
<tr>
<td>Main contactor coil V AC</td>
<td>This terminal is the switched output from the contactor control relay and is derived from the auxiliary supply. The output is internally fused at 3A hence contactor coils having a high pick-up current must be operated via a slave relay.</td>
<td>C</td>
</tr>
<tr>
<td>Note: The contacts of the Contactor Control Relay are suppressed by a series connected resistor (680 Ohms) and capacitor (22nF) to protect the relay contacts. Users should be aware that when the contactor Control Relay is “De-energised”, a leakage current of approximately 2mA can be expected and this should be considered when interfacing to these terminals. Typically, there could be the energisation of very sensitive relays.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The 590 Converter is CE marked in accordance with the low voltage directive for electrical equipment and appliances in the voltage range 50-1000V ac and 75-1500V dc when installed correctly.

EC DECLARATION OF CONFORMITY

We Eurotherm Drives Limited, address as below, declare under our sole responsibility that the following Electronic Products

590H A/D/L (950 - 2700 Amps)

When installed and operated with reference to the instructions in the Product Manual (provided with each piece of equipment), is in accordance with the following standard:-

Dr Martin Payn,
Conformance Officer
Eurotherm Drives Ltd

Dr Dan Slattery,
Technical Director
Eurotherm Drives Ltd

2nd May 1999
Date
Manufacturer’s Declaration

Since the potential hazards are mainly electrical rather than mechanical, the 590 Series Converter does not fall under the machinery directive. However, we do supply a manufacturer’s declaration for when the 590 Series Converter is used (as a component) in machinery.

MANUFACTURER’S DECLARATION

The following Electronic Products

590H A/D/L (950 - 2700 Amps)

are components to be incorporated into machinery and may not be operated alone.

The complete machinery or installation using this equipment may only be put into service when the safety considerations of the Directive 89/392/EEC are fully adhered to.

Particular reference should be made to

EN60204-1 (Safety of Machinery - Electrical Equipment of Machines).

All instructions, warnings and safety information of the Product Manual must be adhered to.

Dr Martin Payn,
Conformance Officer
Eurotherm Drives Ltd

Dr Dan Slattery,
Technical Director
Eurotherm Drives Ltd

EUROTHERM DRIVES LIMITED
NEW COURTWICK LANE, LITTLEHAMPTON, WEST SUSSEX BN17 7RZ
TELEPHONE: 01903 737000 FAX: 01903 737100
Registered number: 1159876 England. Registered Office: Southdownview Way, Worthing, West Sussex BN14 8NN

© 1999 EUROTHERM DRIVES LIMITED

File Name: P:\CE\SAFETY\PRODUCTS\590\590D\LVD\PRODFILE\HK389957.918

| ISS | DATE | DRN | FEP | DRAWING NUMBER | TITLE:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>02.05.99</td>
<td>CHKD</td>
<td>MP</td>
<td>HK389957C918</td>
<td>590A/D/L Machinry Directive</td>
</tr>
</tbody>
</table>

Issue D 20.02.1995 GA387648C017

590H Series DC Converter
Manufacturer’s EMC Declaration

This is provided to aid your justification for EMC compliance when the unit is used as a component.

MANUFACTURERS EMC DECLARATION

In accordance with the EEC Directive 89/336/EEC, Article 10 and Annex 1. (EMC DIRECTIVE)

We Eurotherm Drives Ltd., address as below, declare under our sole responsibility that the following electronic products

590H A/D/L (950 - 2700 Amp)

When installed and used in accordance with the instructions in the product manual (provided with each piece of equipment) to which this declaration refers is in conformity with the following immunity standards only:-

EN61000-4-4 (1995), EN61000-4-6 (1996)

* Compliant with these immunity standards without specified EMC filters.

* For information only

EUROTERM DRIVES LIMITED
NEW COURTWICK LANE, LITTLEHAMPTON, WEST SUSSEX BN17 7RZ

TELEPHONE: 01903 737000 FAX: 01903 737100
Registered number: 1159876 England. Registered Office: Southdownview Way, Worthing, West Sussex BN14 8NN

Dr Martin Payn,
Conformance Officer
Eurotherm Drives Ltd

Dr Dan Slattery,
Technical Director
Eurotherm Drives Ltd

19th May 1999

Date

© 1999 EUROTERM DRIVES LIMITED

File Name: P:\CE\EMC\PRODUCTS\590H\PRODFILE\HK464538.913

ISS: DATE DRN: FEP DRAWING NUMBER: HK464538C193

19.05.99 A MP 590H A/D/L Manufacturers EMC Declaration SHT 1

OF 1 SHTS

590H Series DC Converter
Certification for the Converter
<table>
<thead>
<tr>
<th>ISS.</th>
<th>MODIFICATION</th>
<th>ECN No.</th>
<th>DATE</th>
<th>DRAWN</th>
<th>CHK'D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Initial Issue (HA466272)</td>
<td>13088</td>
<td>1.10.98</td>
<td>FEP</td>
<td>DN</td>
</tr>
<tr>
<td>B</td>
<td>Global updates and changes.</td>
<td>--</td>
<td>21.10.98</td>
<td>FEP</td>
<td>GDR</td>
</tr>
<tr>
<td>C</td>
<td>Chapter 5 - added fuse information. Global updates and changes.</td>
<td>--</td>
<td>27.10.98</td>
<td>FEP</td>
<td>GDR</td>
</tr>
<tr>
<td>D</td>
<td>Figure 2-1: replaced 1-4 with L, N, N, MC; and DC- and DC+ with A- and A+. Page 3-1: corrected weights and added fan weight. Page 3-1: amendments to AC Supply Choke, and added Changing DC Output Terminals. Updated Installation Drawings. Table 3-1: removed HP column. Page 6-3: corrected Torque Nm from 46 to 42 and 4.5 to 4. Page 6-4: added to Spares Available.</td>
<td>--</td>
<td>11.12.98</td>
<td>FEP</td>
<td>GDR</td>
</tr>
<tr>
<td>1</td>
<td>Initial print run (HA466272U001). Printed and cross-referenced to coincide with the release of HA467078, 590 Digital Product Manual.</td>
<td>13088</td>
<td>1.4.99</td>
<td>CM</td>
<td>GDR</td>
</tr>
</tbody>
</table>

FIRST USED ON

File Name: P:\590\H\DOCS\MANUAL\ISSUE_1\ZZ.DOC

EUROTERM DRIVES

590H Series DC Converter

DRAWING NUMBER

ZZ 466272U001

MODIFICATION RECORD

SHT. 1 OF 1

GA387648C016 ISSUE C 03.10.94