

HIGH SPEED MOTORS

MGV Series

Technical Manual

PVD 3627_GB

EU DECLARATION OF CONFORMITY

We,

Parker Hannifin Manufacturing France SAS Electromechanical & Drives Division Europe Etablissement de Longvic 4 Boulevard Eiffel - CS40090 21604 LONGVIC Cedex - France

manufacturer, with brand name Parker, declare under our sole responsibility that the products

BRUSHLESS SERVOMOTORS TYPE MGV

satisfy the arrangements of the directives :

Directive 2014/35/EU: "Low Voltage Directive", LVD

Directive 2011/65/EU: "Restriction of Hazardous Substances", RoHS

Directive 2014/30/EU: "Electromagnetic Compatibility", EMC

and meet standards or normative document according to:

EN 60034-1:2010/AC:2010: Rotating electrical machines - Part 1: Rating and performance. EN 60034-5:2001/A1:2007: Rotating electrical machines - Part 5: Degrees of protection provided by the integral design of rotating electrical machines (IP code) - Classification. EN 60204-1:2006/AC:2010: Safety of machinery - Electrical equipment of machines - Part 1: General requirements.

The product itself is not impacted by the modifications made on the latest directives.

The undersigned hereby certify that the above mentioned model is procured in accordance with the above directives and standards.

Further information:

SERVOMOTORS shall be mounted on a mechanical support providing good heat conduction and not exceeding 40° C in the vicinity of the motor flange.

The product must be installed in accordance with the instructions and recommendations contained in the operating instructions supplied with the product.

C.E. Marking: April 2006

Longvic, October 06th 2016

In the name of Parker
A. ANDRIOT
Quality Manage

Ref : DCE-MGV-001rev0

A. ANDRIOT

Quality Manager

Table of Content

1.	INTRODU	CTION	5
	1.1. PURP	OSE AND INTENDED AUDIENCE	5
		TY	
	1.2.1.	Principle	
	1.2.2.	General Safety Rules	
2.	PRODUC1	DESCRIPTION	
	0.4		_
		RVIEW	
		DR DESCRIPTION AND APPLICATIONS	
	2.2.1.	Test benches	
	2.2.2.	Simulation benches	
		RAL TECHNICAL DATA	
	_	DUCT CODEAL DATA	
ა.			
	3.1. MOTO	DR SELECTION	
	3.1.1.	Altitude derating	
	3.1.2.	Temperature derating	
	3.1.3.	Thermal equivalent torque (rms torque)	
	<i>3.1.4.</i>	Acceleration – Deceleration time with MGV motors	
	3.1.5.	Drive selection	
	3.1.6.	Current limitation at stall conditions (i.e. speed < 3 rpm)	
	3.1.7.	Peak current limitations	
		CHARACTERISTICS: TORQUE, SPEED, CURRENT, POWER	
	3.2.1.	Intrinsic characteristics	
	3.2.2.	AC890 Drive Association	
	3.2.3.	MGV430BAI Detailed Intrinsic Data	
	3.2.4.	MGV430BAI Detailed Data with AC890	
	3.2.5. 3.2.6.	MGV635CAD Detailed Intrinsic Data	
	3.2.0. 3.2.7.	MGV840CAD Detailed Intrinsic Data	
	3.2.7. 3.2.8.	MGV840CAD Detailed Intilisic Data	
	3.2.6. 3.2.9.	MGV860CBD Detailed Intrinsic Data	
	3.2.10.	MGV860CBD Detailed Intilisic Data	
	3.2.11.	MGV950CAX Detailed Intrinsic Data	
	3.2.12.	MGV950CAX Detailed Intimisic Data	
	3.2.13.	MGV966DAX Detailed Intrinsic Data	
	3.2.14.	MGV966DAX Detailed Data with AC890	
	3.2.15.	MGVA50DAX Detailed Intrinsic Data	
	3.2.16.	MGVA50DAX Detailed Data with AC890	
	3.2.17.	MGVA50DBY Detailed Intrinsic Data	55
	3.2.18.	MGVA50DBY Detailed Data with AC890	57
	3.2.19.	MVB40HAA Detailed Intrinsic Data	
	3.2.20.	MGVB40HAA Detailed Data with AC890	61
	3.2.21.	MGVB50HBS Detailed Intrinsic Data	63
	3.2.22.	MGVB50HBS Detailed Data with AC890	65
	3.2.23.	Time constants of the motor	
	3.2.24.	Voltage withstand characteristics of MGV series	
		NSION DRAWINGS	
	3.3.1.	MGV4 outline drawing	
	3.3.2.	MGV6 outline drawing	
	3.3.3.	MGV8 outline drawing	
	<i>3.3.4.</i>	MGV9 outline drawing	
	3.3.5.	MGVA outline drawing	76

	DTOR MOUNTING	78
<i>3.4.1.</i>	Motor mounting	78
<i>3.4.2.</i>	Typical mounting	78
<i>3.4.3.</i>	Integration recommendation	79
3.4.4.	Shaft drawings for calculationof the natural frequencies	80
<i>3.4.5.</i>	Frame recommendation	
<i>3.4.6.</i>	Coupling	87
<i>3.4.7.</i>	Motor alignment	
<i>3.4.8.</i>	Pulley/belt	
<i>3.4.9.</i>	Vibration and bearings temperature control	
3.4.10.	Vibration resistance to shaft end	
3.5. BE	ARINGS	
3.5.1.	Bearing max speed, part numbering, pre-load and load	90
3.6. Co	OCLING	
3.6.1.	General recommendations	92
3.6.2.	Additives for water as cooling media	93
3.6.3.	Motor cooling circuit data and chiller selection	94
3.6.4.	Flow derating according to glycol concentration	
3.6.5.	Water cooling diagram	
3.7. TH	ERMAL PROTECTION	99
3.7.1.	Alarm tripping with PTC thermistors :	99
3.7.2.	Temperature measurement with KTY sensors:	100
3.8. Po	WER ELECTRICAL CONNECTION	
3.8.1.	Wires sizes	101
3.8.2.	Conversion Awg/kcmil/mm ² :	102
3.8.3.	Motor cable length	103
<i>3.8.4.</i>	Mains supply connection diagrams	103
3.9. FE	EDBACK SYSTEM	
3.9.1.	Resolver	
3.9.2.	Cables and connectors associated to the resolver	108
3.9.3.	Resolver setting	108
<i>3.9.4.</i>	Sin-Cos Encoder (on request)	108
. COMMI	SSIONING, USE AND MAINTENANCE	109
4.1. RE	CEPTION, HANDLING, STORAGE	100
4.1.1.	Equipment delivery	
4.1.2.	Handling	
4.1.3.	Storage	
	STALLATION	
	Mounting	
4.2.2.	Preparation	
4.2.3.	Mechanical assembly	
4.2.4.	Alignment	
4.2.5.	Motor startup	
4.2.6.	Shaft line balancing and vibration control	
	ECTRICAL CONNECTION	
4.3.1.	Cable connection	
4.3.2.	Encoder cable handling	
4.3.3.	Terminal box rotation (only for MGV4, 6 and 8)	
	INTENANCE OPERATIONS	
	OUBLESHOOTING	

1. INTRODUCTION

1.1. Purpose and intended audience

This manual contains information that must be observed to select, install, operate and maintain PARKER MGV high speed motors.

Installation, operation and maintenance of the equipment should be carried out by qualified personnel. A qualified person is someone who is technically competent and familiar with all safety information and established safety practices; with the installation process, operation and maintenance of this equipment; and with all the hazards involved.

Reading and understanding the information described in this document is mandatory before carrying out any operation on the motors. If any malfunction or technical problem occurs, that has not been dealt with in this manual, please contact PARKER for technical assistance. In case of missing information or doubts regarding the installation procedures, safety instructions or any other issue tackled in this manual, please contact PARKER as well.

PARKER's responsibility is limited to its torque motors and does not encompass the whole user's system. Data provided in this manual are for product description only and may not be guaranteed, unless expressly mentioned in a contract.

<u>DANGER:</u> PARKER declines responsibility for any accident or material damage that may arise, if the procedures and safety instructions described in this manual are not scrupulously followed.

<u>Warning:</u> Due to the **VERY HIGH SPEED**, the user of this motor has to **respect all the recommendations** in this manual.

1.2. Safety

1.2.1. Principle

To operate safely, this equipment must be transported, stored, handled, installed and serviced correctly. Following the safety instructions described in each section of this document is mandatory. Torque Motors usage must also comply with all applicable standards, national directives and factory instructions in force.

<u>DANGER:</u> Non-compliance with safety instructions, legal and technical regulations in force may lead to physical injuries or death, as well as damages to the property and the environment.

1.2.2. General Safety Rules

Generality

<u>DANGER:</u> The installation, commission and operation must be performed by qualified personnel, in conjunction with this documentation.

The qualified personnel must know the safety (C18510 authorization, standard VDE 0105 or IEC 0364) and local regulations.

They must be authorized to install, commission and operate in accordance with established practices and standards.

Electrical hazard

Servo drives may contain non-insulated live AC or DC components. Respect the drives commissioning manual. Users are advised to guard against access to live parts before installing the equipment.

Some parts of the motor or installation elements can be subjected to dangerous voltages, when the motor is driven by the inverter, when the motor rotor is manually rotated, when the motor is driven by its load, when the motor is at standstill or stopped.

For measurements use only a meter to IEC 61010 (CAT III or higher). Always begin using the highest range. CAT I and CAT II meters must not be used on this product.

Allow at least 5 minutes for the drive's capacitors to discharge to safe voltage levels (<50V). Use the specified meter capable of measuring up to 1000V dc & ac rms to confirm that less than 50V is present between all power terminals and between power terminals and earth.

The motor must be permanently connected to an appropriate safety earth. The continuity of the grounding circuit has to be checked on the complete circuit: the resistance between any conductive point and the grounding conductor shall not exeed than $100 \text{m}\Omega$.

To prevent any accidental contact with live components, it is necessary to check that cables are not damaged, stripped or not in contact with a rotating part of the machine. The work place must be clean and dry.

General recommendations:

- Check the wiring circuit
- Lock the electrical cabinets
- Use standardized equipment

Mechanical hazard

Servomotors can accelerate in milliseconds. Running the motor can lead to other sections of the machine moving dangerously. Moving parts must be screened off to prevent operators coming into contact with them. The working procedure must allow the operator to keep out of the danger area.

Burning Hazard

Always bear in mind that some parts of the surface of the motor can reach temperatures exceeding 100°C.

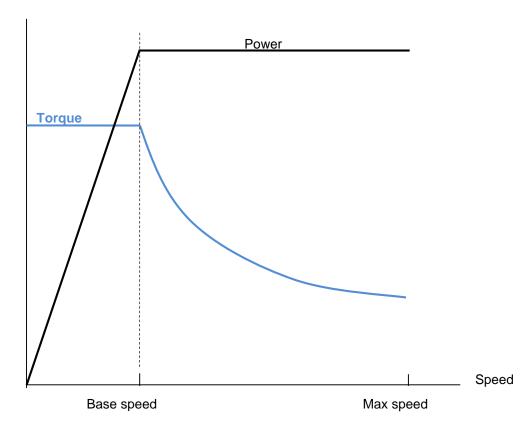
2. PRODUCT DESCRIPTION

2.1. Overview

The MGV high-speed motors from Parker are innovating solutions through direct drive, specifically designed for industrial applications where high speed is needed.

The MGV motors are brushless synchronous servomotors, with permanent magnets, based on HKW active parts and fully integrated with a water-cooled housing, high speed ball bearings, encoder ...

The water cooling increases the torque density and allows a silent operation.


These motors are taking advantage from the flux weakening principle that allows, at the same time, a high torque at low speed and a constant power after a given speed (called base speed).

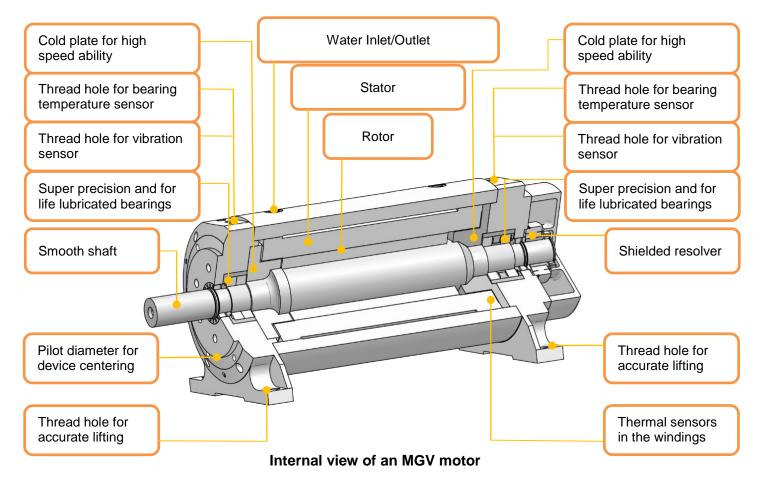
As there is no current in the rotor, the losses in the rotor are very low

There are two areas:

- A constant torque area from the null speed to the base speed, where the motor is performing as an axis motor.
- A constant power area that allows to perform at higher speed.

MGV motor typical curve

2.2. Motor description and Applications


These motors are characterized by a low inertia, a high acceleration capability and a high speed up ability.

Driving is insured through a 2 poles resolver giving an absolute position on one turn.

Many winding are available to get the wished torque and speed characteristics for power up to 80KW with the DIGIVEX drives.

Higher power is available with the universal PARKER AC890 drives.

The MGV motors are supplied integrated and ready to be used.

2.2.1. Test benches

MGV motors are successfully used on test benches for characterization, control, burn-in tests of automotive or aeronautical components (starters, pumps, alternators, pulleys, freewheels, belts, gearboxes ...).

2.2.2. Simulation benches

Thanks to the possibility to generate running cycles with fast answers, the MGV motors can be used for simulation (speed simulation in urban cycle or automobile race, non-cyclic speed simulation for engine ...).

2.3. General technical data

Motor type Permanent-magnet synchronous motor

Magnet material Nd-Fe-B

Number of poles

Size:	MGV4	MGV6	MGV8	MGV9	MGVA	MGVB
Nbr of poles:	4	6	6	6	8	16

Mechanical interface Feet IM B3

or feet and flange IM B34 (IEC60034-7)

Sizes 4, 6, 8, 9, A, B

Degree of Protection IP40 as standard

Cooling Water cooled

Cooling water temperature 5°C to 25°C (IEC 60034-1) – to avoid condensation see

§3.6

Altitude Up to 1000m (IEC 60034-1)

(for higher altitude see "Altitude derating")

Rated voltage 400 VAC or 480 VAC

Connections Terminal box and encoder signal connector.

Insulation of the stator winding Class F according to IEC 60034-1 with potting

Thermal protection 1 PTC probes and 1 KTY84-130 sensor

Operating temperature 0°C...+40°C (IEC 60034-1) – to avoid condensation see

§3.6

Storage temperature -20... +60°C

Rotor balancing G1 class

Shaft end Smooth shaft as standard

Bearings Steel or ceramic, depending on speed and load

Sensor Resolver

Paint finish Black RAL9005

Marking CE

2.4. Product Code

Code	M	G	V	8	4	0	С	Α	D	Α	В	3	L	R	6	0	0	0
Product Series	s —																	
Motor size (in with diameter)	conr	necti	on															
4, 6, 8, 9, A or	В																	
Active Part Le	ngth	1 —																
Torque / Spee	d ch	arac	cteris	stics	_													
See motor data																		
Feedback Sen	sor																	
A : Resolver K : sin/cos enc	oder	(on	requ	est)														
Mounting arra	nge	men	t —															
B3 : by feet																		
Bearing desig	n	_																
L : Low speed H : high speed X : very high sp	hyb(rid b	earir	ngs) ์														
Unused chara	cter																	
Mechanical O	ptior	1 —																
1 : Flying wires 6 : Terminal bo																		
000 : Standard	mot	or																

3. TECHNICAL DATA

3.1. Motor selection

3.1.1. Altitude derating

From 0 to1000 m: no derating

From 1000 to 4000 m: torque derating of 5% for each step of 1000 m

3.1.2. Temperature derating

Water cooled motor

Typical values are given with a water inlet temperature of 25°C and a temperature gradient Inlet-Outlet of 10°C. These references lead to a winding overheating of **90°C** corresponding to a winding temperature of **115°C**. Recommendations regarding condensation issues are given at § 3.6.

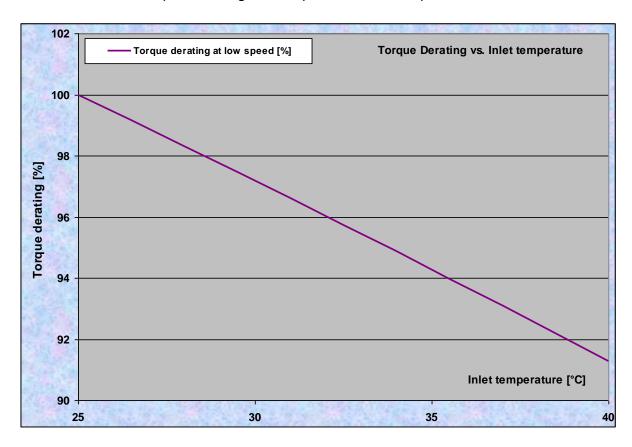
It is possible to increase a little bit the Inlet temperature up to 40°C, but the torque must be reduced. The following formula gives an indicative about the torque derating at low speed. But in any case refer to Parker technical department to know the exact values

At low speed the torque derating is given by the following formula for an water Inlet temperature > 25°C.

$$Torque_derating[\%] = 100 * \sqrt{\frac{(115^{\circ}C - Inlet_temperature^{\circ}C)}{90^{\circ}C}}$$

At high speed, the calculation is more complex, and the derating is much more important.

Please refer to PARKER to know the precise data of Torque derating according to water inlet temperature at high speed for a specific motor.


N.B. No general rules can be applied concerning the torque derating of MGV motors **at high speed**. Please refer to Parker for each case.

In fact, the torque derating at high speed also depends on:

- the flux weakening ratio which leads to a short circuit current inherent in the motor (no action can reduce its value).
- the maximal speed of the motor which determines the iron losses and mechanical losses due to the rotation.

Illustration of the torque derating vs. temperature at low speed for a MGV motor:

3.1.3. Thermal equivalent torque (rms torque)

The selection of the right motor can be made through the calculation of the rms torque M_{rms} (i.e. root mean squared torque) (sometimes called equivalent torque).

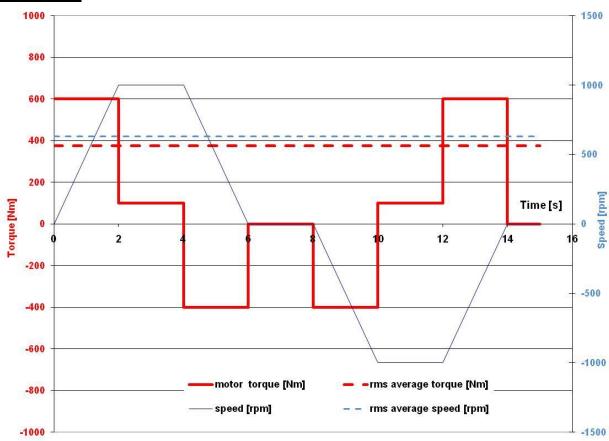
This calculation does not take into account the thermal time constant. It can be used only if the overload time is much shorter than the copper thermal time constant.

The rms torque M_{rms} reflects the heating of the motor during its duty cycle.

Let us consider:

- the period of the cycle T[s],
- the successively samples of movements i characterized each ones by the maximal torque M_i [Nm] reached during the duration Δt_i [s].

So, the rms torque Mrms can be calculated through the following basic formula:


$$M_{rms} = \sqrt{\frac{1}{T} * \sum_{i=1}^{n} M_i^2 \Delta t_i}$$

Example:

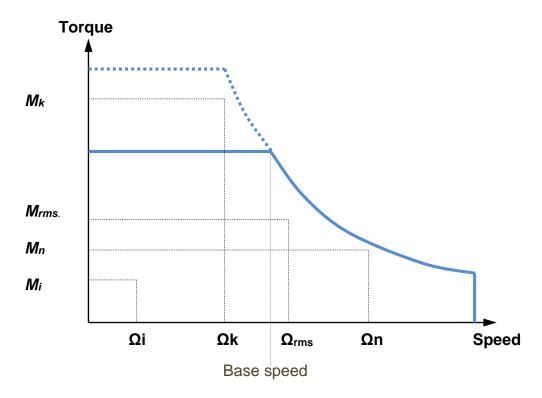
For a cycle of 2s at 0 Nm and 2s at 100Nm, the rms torque is

$$M_{rms} = \sqrt{\frac{1}{4} * 100^2 * 2} = 70.7 Nm$$

Illustration:

The maximal torque M_i delivered by the motor at each segment i of movement is obtained by the algebric sum of the acceleration-deceleration torque and the resistant torque.

Therefore, M_{max} corresponds to the maximal value of M_i .


Selection of the motor:

The motor adapted to the duty cycle has to provide the rms torque M_{rms} at the rms speed(*) without extra heating. This means that the permanent torque M_n available at the average speed presents a sufficient margin regarding the rms torque M_{rms} .

$$\Omega_{rms} = \sqrt{\frac{1}{T} * \sum_{i=1}^{n} \Omega_{i}^{2} \Delta t_{i}}$$

(*) rms speed is calculated thanks to the same formula as that used for the rms torque. The mean speed cannot be used (in general mean speed is equal to zero). Only use the rms speed

Furthermore, each Mi and speed associated Ω i of the duty cycle has to be located in the operational area of the torque vs speed curve

3.1.4. Acceleration - Deceleration time with MGV motors

A MGV motor shows two phases during its acceleration (resp. deceleration) time:

- from 0 to the *Base speed* during its acceleration (or inversely from the *Base speed* to 0 during its deceleration), the phase is called "at constant Torque".
- from the *Base speed* to the *Maximal speed* during its acceleration (or inversely from the *Maximal speed* to the *Base speed* during its deceleration), the phase is called "at constant Power" or "Spindle mode".

We assume that the resistant torque is maintained constant and that the motor is able to provide it during the whole acceleration (resp. deceleration) phase. So the calculation of the total acceleration (resp. deceleration) time can be separated in two parts as explained below. When the resistant torque is not constant, the calculation becomes more complex and can be made through iterative means.

Notations:

N_{base} Base speed of the motor [rpm]

 Ω_{base} Base angular speed of the motor [rad/s]

 ΣJ Total inertia {motor rotor inertia + load inertia reflected to the motor} [kgm²] M_{motor} equal to M_{S6} (peak torque) for a short acceleration (deceleration) time,

otherwise M_{S1} (constant torque) [Nm]

Mresistant Resistant torque, considered as constant during the whole acceleration

(resp. deceleration) phase [Nm]

M Torque available for the acceleration (respectively deceleration) [Nm]

N_{max} Maximal speed of the application [rpm]

 Ω_{max} Maximal angular speed of the application [rad/s]

P_{motor} equal to **P**_{S6} (peak power) for a short acceleration (deceleration) time,

otherwise Ps1 (constant power) [W]

Power available for the acceleration (respectively deceleration) [W]
Acceleration (respectively deceleration) time "at constant Torque" [s]
Acceleration (respectively deceleration) time "at constant Power" [s]

At Global acceleration (respectively deceleration) time [s]

Angular speeds:

$$\Omega_{base} = \frac{2 * \pi * N_{base}}{60} \qquad \Omega_{\text{max}} = \frac{2 * \pi * N_{\text{max}}}{60}$$

3.1.4.1. Constant Torque Phase – t₁ calculation

Acceleration time t₁ "at constant Torque" from 0 to the Base speed:

$$M = M_{motor} - M_{resistant}$$

$$t_1 = \frac{\Omega_{base} * \Sigma J}{M}$$

Deceleration time t₁ "at constant Torque" from Base speed to 0:

$$M = M_{motor} + M_{resistant}$$

$$t_1 = \frac{\Omega_{base} * \Sigma J}{M}$$

3.1.4.2. Constant Torque Phase - t2 calculation

Method #1:

This method is simple and provides an estimation of to sufficient in most situations:

- when the resistant torque Mresistant is small compared to Mmotor
- when the resistant torque Mresistant is equal to 0.

Procedure to follow:

We calculate firstly <u>an estimation</u> of the resistant power *Presistant* as follows:

$$P_{resistant} \approx M_{resistant} * \frac{(\Omega_{max} + \Omega_{base})}{2}$$

Acceleration time t2 "at constant Power" from Base speed to Maximal speed:

The power available for the acceleration is equal to:

$$P = P_{mot} - P_{resistant}$$

So the estimated duration to is given by the formula:

$$t_2 = \frac{\frac{1}{2} \Sigma J * (\Omega_{\text{max}}^2 - \Omega_{base}^2)}{P}$$

Deceleration time t2 "at constant Power" from Maximal speed to Base speed:

The power available for the deceleration is equal to:

$$P = P_{mot} + P_{resistant}$$

So the <u>estimated</u> duration **t**₂ is given by the formula:

$$t_2 = \frac{\frac{1}{2} \Sigma J * (\Omega_{\text{max}}^2 - \Omega_{base}^2)}{P}$$

Total acceleration (resp. deceleration) time Δt will be given by the sum of t_1 and t_2 :

$$\Lambda t = t_1 + t_2$$

Method #2:

This method is more complex but provides the exact solution for to. It is sometimes used where justified by the required accuracy or by a resistant torque Mresistant nonnegligible compared to M_{motor} . This method is only valid if $M_{resistant} \neq 0$.

to is solution of a nonlinear first order differential equation. Mresistant ≠0

Procedure to follow:

Acceleration time t2 "at constant Power" from Base speed to Maximal speed:

$$a = \Sigma J$$

$$b = P_{motor}$$

$$c = M_{resistant}$$

$$d = M_{motor} - M_{resistant}$$

$$y_0 = \Omega_{base}$$

$$y_1 = \Omega_{\text{max}}$$

$$\lambda = y_0 - \frac{b}{a}$$

$$\mu = \frac{a * \lambda}{c}$$

$$t_x = -\frac{1}{c} * Ln \left| \frac{1}{\lambda} * (y_1 - \frac{b}{c}) \right|$$

$$c | \lambda$$

$$t_1 = \frac{y_0 * a}{d}$$

acceleration_time in_axis mod e

$$t_2 = \mu + \frac{a}{c}(b * t_x - \lambda * e^{-c*t_x})$$
 acceleration_time in_spindle mod e

Total acceleration time 4t from 0 to Maximal speed is given by the sum of t1 and t2:

$$\Lambda t = t_1 + t_2$$

Deceleration time t₂ "at constant Power" from Maximal speed to Base speed:

$$a = \Sigma J$$

$$b = -P_{motor}$$
 negative value $\Leftrightarrow braking$

$$c = M_{resistant}$$

$$d = -M_{motor} - M_{resistant}$$

$$y_0 = \Omega_{\text{max}}$$

$$y_1 = \Omega_{base}$$

$$\lambda = y_0 - \frac{b}{c}$$

$$\mu = \frac{a * \lambda}{c}$$

$$t_x = -\frac{1}{c} * Ln \left| \frac{1}{\lambda} * (y_1 - \frac{b}{c}) \right|$$

$$t_1 = -\frac{y_1 * a}{d}$$

deceleration_time in_axis mod e

$$t_2 = \mu + \frac{a}{c}(b * t_x - \lambda * e^{-c*t_x})$$
 deceleration_time in_spindle mod e

Total deceleration time Δt from Δt fr $\Lambda t = t_1 + t_2$

3.1.4.3. Numerical example:

The MGV motor taken to illustrate the calculations is the type *MGV840CAD* Corresponding data are as follows:

 $P_{S1} = P_{S6} = 63 \text{ kW}$ $N_{base} = 10300 \text{ rpm}$ $N_{max} = 24000 \text{ rpm}$ $M_{S1} = 58.4 \text{ Nm}$ $M_{S6} = 93.5 \text{ Nm}$ $J_{motor} = 0.01455 \text{ kgm}^2$

We will consider:

Mresistant = 6 Nm

 $J_{load} = J_{motor}$ 0.01455 kgm²

Method #1

$$\begin{split} &\frac{\text{INERTIOG }\#1}{\Omega_{base}} = \frac{2^*\pi^*N_{base}}{60} & \frac{2^*\pi^*10300}{60} = 1079 \quad \text{rad/s} \\ &\Omega_{\max} = \frac{2^*\pi^*N_{\max}}{60} & \frac{2^*\pi^*24000}{60} = 2513 \quad \text{rad/s} \\ &\Sigma J = J_{motor} + J_{load} & 0.01455 + 0.001455 = 0.02910 \quad \text{kgm}^2 \\ &P_{resistant} \approx M_{resistant} * \frac{(\Omega_{\max} + \Omega_{base})}{2} & = 6 * \frac{(2513 + 1079)}{2} = 10776 \quad \text{W} \end{split}$$

Acceleration duration t1 "at constant Torque" from 0 to the Base speed:

$$M = M_{motor} - M_{resistan t} = 58.4 - 6 = 52.4$$
 Nm
 $t_1 = \frac{\Omega_{base} * \Sigma J}{M} = \frac{1079 * 0.02910}{52.4} = 0.599$ s

Deceleration time t₁ "at constant Torque" from the Base speed to 0:

$$M = M_{motor} + M_{resistant} = 58.4 + 6 = 64.4$$
 Nm
 $t_1 = \frac{\Omega_{base} * \Sigma J}{M} = \frac{1079 * 0.02910}{64.4} = 0.487$ s

Acceleration time t2 "at constant Power" from Base speed to Maximal speed:

The power available for the acceleration is equal to:

$$P = P_{mot} - P_{resistant}$$
 = 63000 - 10776 = 52224 W

So the <u>estimated</u> duration **t**₂ is given by the formula:

$$t_2 = \frac{\frac{1}{2} \sum J(\Omega_{\text{max}}^2 - \Omega_{\text{base}}^2)}{P} = \frac{0.5 * 0.02910 * (2513^2 - 1079^2)}{52224} = 1.436 \quad \text{s}$$

Total acceleration time At from 0 to Maximal speed is given by the sum of t1 and t2:

$$\Delta t = t_1 + t_2$$
 0.599 + 1.436 = 2.035 s

Deceleration time t₂ "at constant Power" from Maximal speed to Base speed:

The power available for the deceleration is equal to:

$$P = P_{mot} + P_{resistant} = 63000 + 10776 = 73776$$
 W

So the estimated duration to is given by the formula:

$$t_2 = \frac{\frac{1}{2} \Sigma J(\Omega_{\text{max}}^2 - \Omega_{base}^2)}{P} = \frac{0.5 * 0.02910 * (2513^2 - 1079^2)}{73776} = 1.016 \quad \text{s}$$

Total deceleration time <u>At from Max speed to 0</u> will be given by the sum of t₁ and t₂:

$$\Delta t = t_1 + t_2 = 0.487 + 1.016 = 1.503$$
 s

Method #2

to is solution of a nonlinear first order differential equation.

Mresistant ≠0

Acceleration time t2 "at constant Power" from Base speed to Maximal speed:

$$a = \Sigma J = J_{motor} + J_{load} = 0.02910 \text{ kgm}^{2}$$

$$b = P_{mot} = 63000 \text{ W}$$

$$c = M_{resistant} = 6 \text{ Nm}$$

$$d = M_{mot} - M_{resistant} = M = 58.4 - 6 = 52.4 \text{ Nm}$$

$$y_{0} = \Omega_{base} = 1079 \text{ rad/s}$$

$$y_{1} = \Omega_{max} = 2513 \text{ rad/s}$$

$$\lambda = y_{0} - \frac{b}{c} = 1079 - \frac{63000}{6} = -9421$$

$$\mu = \frac{a*\lambda}{c} = \frac{0.02910*(-9421)}{6} = -45.69$$

$$t_{x} = -\frac{1}{c}*Ln \left| \frac{1}{\lambda}*(y_{1} - \frac{b}{c}) \right| = -\frac{1}{6}*Ln \left| \frac{1}{-9421}*(2513 - \frac{63000}{6}) \right| = 0.0275$$

$$t_{1} = \frac{y_{0}*a}{d} = \frac{1079*0.02910}{52.4} = 0.599 \text{ s} \qquad acceleration_axis mod e$$

$$t_{2} = \mu + \frac{a}{c}(b*t_{x} - \lambda*e^{-c*t_{x}}) \qquad acceleration_spindle mod e$$

$$t_{2} = -45.69 + \frac{0.02910}{6}(63000*0.0275 - (-9421)*e^{-6*0.0275}) = 1.455 \text{ s}$$

Total acceleration time At from 0 to Maximal speed is given by the sum of t1 and t2:

$$\Delta t = t_1 + t_2 = 0.599 + 1.455 = 2.054s$$

Deceleration time t2 "at constant Power" from Maximal speed to Base speed:

$$a = \Sigma J = J_{motor} + J_{load} = 0.02910$$
 kgm²

$$b = -P_{mot} = -63000$$
 W negative value \Leftrightarrow braking

$$c = M_{resistant} = 6 Nm$$

$$d = -M_{mot} - M_{resistant} = M = -58.4 - 6 = -64.4$$
 Nm negative value \Leftrightarrow braking

$$y_0 = \Omega_{\text{max}} = 2513 \quad rad/s$$

$$y_1 = \Omega_{base} = 1079 \quad rad/s$$

$$\lambda = y_0 - \frac{b}{c} = 2513 - \frac{-63000}{6} = 13013$$

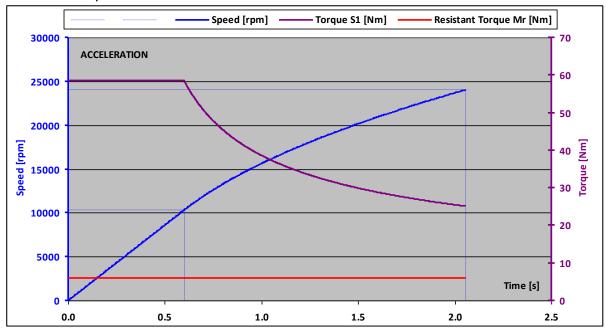
$$\mu = \frac{a * \lambda}{c} = \frac{0.02910*13013}{6} = 63.114$$

$$t_x = -\frac{1}{c} * Ln \left| \frac{1}{\lambda} * (y_1 - \frac{b}{c}) \right| = -\frac{1}{6} * Ln \left| \frac{1}{13013} * (1079 - \frac{-63000}{6}) \right| = 0.01947$$

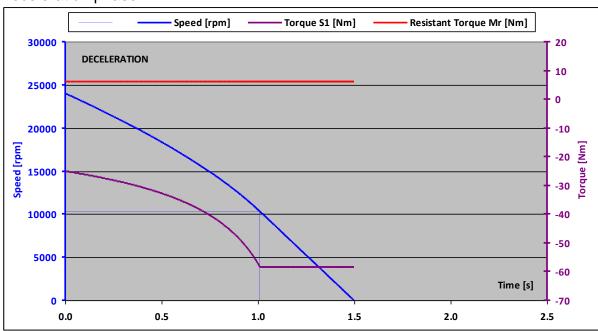
$$t_1 = -\frac{y_1 * a}{d} = -\frac{1079 * 0.02910}{-64.4} = 0.487 s$$
 deceleration_time in_axis mod e

$$t_2 = \mu + \frac{a}{c}(b * t_x - \lambda * e^{-c*t_x})$$
 deceleration_time in_spindle mod e

$$t_2 = 63.114 + \frac{0.02910}{6} (-63000 * 0.01947 - 13013 * e^{-6*0.01947}) = 1.0095$$
 s


Total deceleration time <u>At from Max speed to 0 will be given by the sum of t₁ and t₂:</u>

$$\Delta t = t_1 + t_2 = 0.487 + 1.0095 = 1.497$$



Illustrations:

Acceleration phase

Deceleration phase

3.1.5. Drive selection

The drive selection depends on its rated power, nominal current and maximal electrical frequency able to be managed by the drive and by the flux weakening ratio.

Please refer to the drive technical documentation for any further information and to select the best motor and drive association.

Short circuit current of the motor must be lower than the permanent current of the drive

 $I_{\text{cc_motor}} < I_{\text{S1_drive}}$ Please refer to the drive technical documentation

Short circuit current of the motor must be lower than 0.8 times the peak current of the drive

 $I_{\text{cc_motor}} < 0.8 \text{ x } I_{\text{peak_drive}}$ Please refer to the drive technical documentation

Max back emf of the motor must be lower than the max voltage (from the motor) supported by the drive

Please refer to the drive technical documentation

The drive must be able to manage the flux weakening and must avoid voltage higher than the nominal motor voltage at the motor terminals. Please, check field weakening ratio supported by the drive. Field weakening ratio = Max speed divided by the basis speed

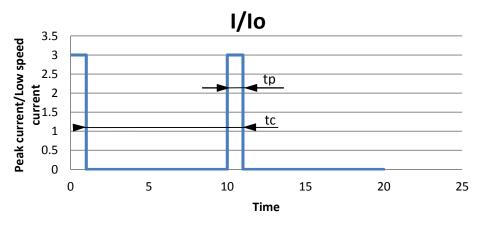
Due to the maximum electrical frequency able to be managed by the drive, the motor has a speed limitation given as follows:

Speed limitation(rpm) = $\frac{2*M \text{ ax_drive_frequency (Hz)*}60}{\text{Number_of_poles}}$

Other limitations can come from the bearing type (steel straight, hybrid or Xlife)
Cf: §3.4 Bearing

3.1.6. Current limitation at stall conditions (i.e. speed < 3 rpm)

Recommended reduced current at speed < 3 rpm:

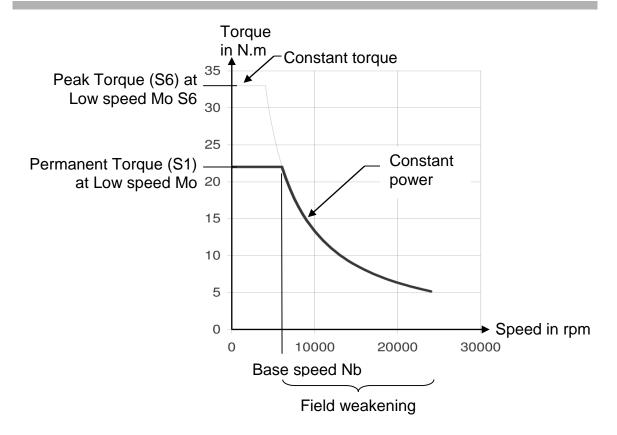


<u>Warning:</u> The current must be limited to the prescribed values. If the nominal torque has to be maintained at stop or low speed (< 3 rpm), imperatively limit the current to 80% of I_0 (permanent current at low speed), in order to avoid an excessive overheating of the motor.

Please refer to the drive technical documentation for any further information and to choose functions to program the drive.

3.1.7. Peak current limitations

It is possible to use the MGV motors with a current higher than the permanent current. But, to avoid any overheating, the following rules must be respected.


- The peak currents and peak torques given in the data sheet must never be exceeded
- 2) The thermal equivalent torque must be respected (§3.1.3)
- 3) If 1) and 2) are respected (it can limit the peak current value or duration), the peak current duration (tp) must be limited, in addition, accordingly to the following table (lo is the permanent current at low speed):

	Tp (second)									
lpeak/In	1,2	1,4	1,6	1,8	2	2,2	2,4	>2.4		
MGV4	2,8	1,3	0,8	0,6	0,4	0,3	0,3			
MGV6	2,5	1,1	0,7	0,5	0,4	0,3	0,2	eq		
MGV8	2,5	1,1	0,7	0,5	0,4	0,3	0,2	allowed		
MGV9	5,1	2,4	1,4	1,0	0,8	0,6	0,5	a		
MGVA	5,1	2,4	1,4	1,0	0,8	0,6	0,5	not		
MGVB	4,9	2,3	1,4	1,0	0,7	0,6	0,5			

The peak current duration is calculated for a temperature rise of 3°C Consult us for more demanding applications.

3.2. MGV Characteristics: Torque, speed, current, power...

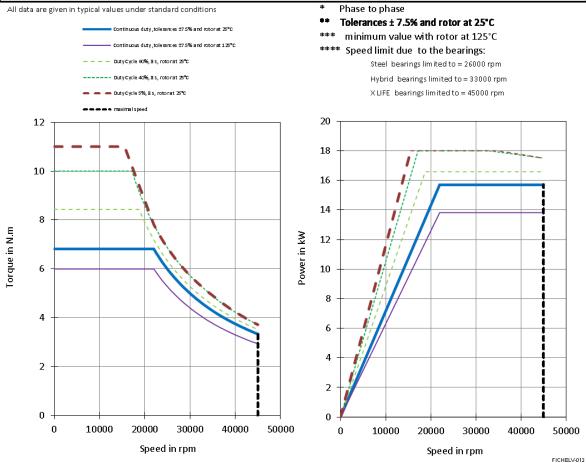
3.2.1. Intrinsic characteristics

Motor	S1 Power	Max. Speed with Steel Bearings	Max. Speed with Ceramic bearings	Max. Speed with X- life Bearings	Frequency at max speed with X-life	Low speed Torque	Low speed Current	Peak Torque	Peak Current	Base speed	Inertia	Polarity
	PS1	Nmax	Nmax	Nmax	fmax	Мо	lo	Mpeak	I peak	Nb	J	р
	[kW]	[rpm]	[rpm]	[rpm]	[Hz]	[Nm]	[Arms]	[Nm]	[Arms]	[rpm]	[kgm²]	[-]
MGV430BAI	15,7	26 000	33 000	45 000	1500	6,8	35	11	78,1	22000	0,00089	4
MGV635CAD	25	18 500	25 000	30 000	1500	20	49,4	30	74,3	11900	0,00352	6
MGV840CAD	63	14 300	18 000	24 000	1200	58	123	100	227	10400	0,0186	6
MGV860CBD	94	14 300	18 000	24 000	1200	120	136	170	202	7500	0,0264	6
MGV950CAX	175	11 700	16 000	20 000	1000	200	454	300	821	8350	0,063	6
MGV966DAX	250	-	-	8 000	533	520	505	900	982	4600	0,076	8
MGVA50DAX	260	9 200	12 000	-	800	440	558	600	798	5600	0,292	8
MGVA50DBY	290	9 200	12 000	-	800	570	560	800	870	4820	0,292	8
MGVB40HAA	350	5 000	8 000	-	1067	1000	722	1800	1410	3350	0,84	16
MGVB50HBS	500	5 000	8 000	-	1067	1500	1010	2700	1900	3200	1,04	16

3.2.2. AC890 Drive Association

Motor	AC890 drive	S1 Power	Max. Speed with Steel Bearings	Max. Speed with Ceramic bearings	Max. Speed with X-life Bearings	Low speed Torque	Peak Torque
		PS1	Nmax	Nmax	Nmax	Mo	Mpeak
		[kW]	[rpm]	[rpm]	[rpm]	[Nm]	[Nm]
MGV430BAI	890SD-522450D	15,7	26 000	30 000	-	6,8	7,2
MGV635CAD	890SD-432730E	25	18 500	20 000	-	20	29,5
MGV840CAD	890SD-433105F	63	14 300	18 000	20 000	58	59,5
MGV860CBD	890PXSA-43215M	94	11 600	-	-	120	161
MGV860CBD	890PXSA-43215M + VPM	94	14 300	18 000	20 000	120	161
MGV950CAX	890PXSA-43480M	170	11 700	16 000	20 000	193	193
MGV966DAX	890PXSA-43580M	250	-	-	8 000	520	535
MGVA50DAX	890PXSA-43580M	240	9 200	11 800	-	412	412
MGVA50DBY	890PXSA-43580M	270	9 200	-	-	535	535
MGVB40HAA	2 x 890PXSA-43420M	350	5 000	7 000	-	1000	1080
MGVB50HBS	3 x 890PXSA-43580M	500	5 000	6 200	-	1500	2000

Creation: 5 / 4 / 2016


3.2.3. MGV430BAI Detailed Intrinsic Data

High speed brushless motor
MGV430BAI
ELECTRONIC DRIVE
DRIVE 36/79 - 400

Indice g

S1 power **/***	15.7 / 12.8	kW	Ps1
S6 power **/***	18 / 14.7	kW	Ps6
Low speed torque ** / ***	6.8 / 5.55	N.m	M_o
Low speed S6 torque **/***	11 / 8.97	N.m	M ₀S6
Base speed (S1)	22000	rpm	Nb
Max speed ****	45000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	35	Arms	I _o
S6 current at low speed	78.1	Arms	1 _a S6
Winding resistance(25°C) *	0.205	Ω	Rb
Rotor inertia	0.00089	kg.m²	J
Thermal time constant	1	min	Tth
Motor mass	35	kg	M
Min water cooling flow (inlet 25°C MAX, 30% glycol)	3.3	I/min	Wf

Edition: 12 / 1 / 2017

High speed brushless motor

MGV430BAI

ELECTRONIC DRIVE

DRIVE 36/79 - 400

Main e	haracteristics	8	
S1 power **/***	15.7 / 12.8	kW	Ps1
S6 power **/***	18 / 14.7	kW	Ps6
Low speed torque ** / ***	6.8 / 5.55	N.m	M _o
Low speed S6 torque **/***	11 / 8.97	N.m	<i>M</i> ₀ S6
Base speed (S1)	22000	rpm	Nb
Max speed ****	45000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	35	Arms	10
S6 current at low speed	78.1	Arms	1 ₀ S6
Mechan	ical paramete	rs	
Rotor inertia	0.00089	kg.m²	J
Motor mass	35	kq	M
Maximum speed with steel bearings	26000	rpm	N ₂
Maximum speed with hybrid bearings	33000	rpm	N ₂
Maximum speed with X LIFE bearings	45000	rpm	N ₂
Maximum speed with Drive	45000	rpm	Nmax
Maximum mechanical speed	50000	rpm	Nmec
Electric	al parameter	S	
Number of poles	4		
Winding resistance (25°C) *	0.205	Ω	Rb
Back EMF voltage phase to phase / 1000 rpm	11.7	Vrms / 1000 rpm	ke
Back EMF voltage phase to phase / (rad/s)	0.112	Vrms / (rad/s)	ku
Torque constant	0.194	N.m / Arms	Kt
Short circuit current	31.6	Arms	Icc
Inductance Lq phase to phase (Back EMF voltage axis) *	2.35	mH	Ĺq
Inductance Ld phase to phase *	2.05	mH	Ld
Optimal phasing at permanent current	20	electrical degree	ψο
Optimal phasing at S6 current	30	electrical degree	ψm
Therm	al parameters	y .	
Motor thermal resistance	0.0818	K/W	Rth
Motor thermal time constant	1	min	Tth
Winding thermal time constant	0.38	min	Tth w
9		16-2-	TTT.C
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	3.3	I/min	Wf

All data are given in typical values under standard conditions

* Phase to phase

*** minimum value with rotor at 125°C

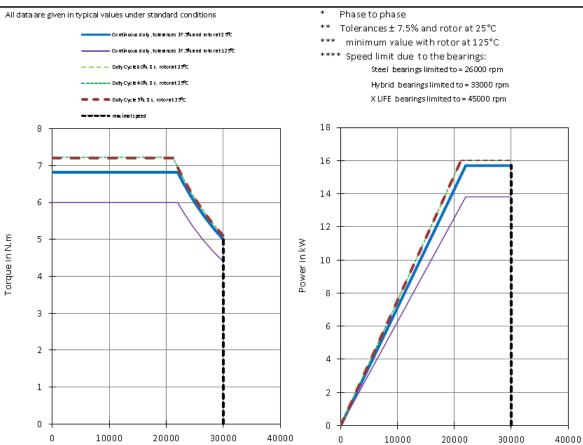
FICHELV-012

**** Speed limit due to the bearings:

Creation : 5 / 4 / 2016 Edition : 12 / 1 / 2017 MGV430BAI Indice g

^{**} Tolerances ± 7.5% and rotor at 25°C

3.2.4. MGV430BAI Detailed Data with AC890


High speed brushless motor

M GV430BAI

ELECTRONIC DRIVE

890SD-522450D

S1 power **/***	15.7/12.8	kW	Ps1
S6 power **/***	16 / 13.1	kW	Ps6
Low speed torque ** / ***	6.8 / 5.55	N.m	Mo
Low speed S6 torque **/***	7.2 / 5.87	N.m	M ₀ S6
Base speed (S1)	22000	rpm	Nb
Max speed ****	30000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	35	Arms	10
S6 current at low speed	37.7	Arms	1,56
Winding resistance (25°C) *	0.205	Ω	Rb
Rotor inertia	0.00089	kg.m²	J
Thermal time constant	1	min	Tth
Motor mass	35	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	3.3	l/min	W_f

Speed in rpm

Speed in rpm

High speed brushless motor

MGV430BAI

ELECTRONIC DRIVE

890SD-522450D

Main o	characteristics	5	
S1 power **/***	15.7/12.8	kW	Ps1
S6 power **/***	16/13.1	kW	Ps6
Low speed torque ** / ***	6.8 / 5.55	N.m	Mo
Low speed S6 torque **/***	7.2 / 5.87	N.m	MaS6
Base speed (S1)	22000	rpm	Nb
Max speed ****	30000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	35	Arms	10
S6 current at low speed	37.7	Arms	1 ₀ S6
Mechan	ical paramete	ers	
Rotor inertia	0.00089	kg.m²	J
Motor mass	35	kg	M
Maximum speed with steel bearings	26000	rpm	N,
Maximum speed with hybrid bearings	33000	rpm	N ₂
Maximum speed with X LIFE bearings	45000	rpm	N ₃
Maximum speed with Drive	30000	rpm	Nmax
Maximum mechanical speed	50000	rpm	Nmec
Electric	cal parameter	35	
Number of poles	4		
Winding resistance (25°C) *	0.205	Ω	Rb
Back EMF voltage phase to phase / 1000 rpm	11.7	Vrms / 1000 rpm	ke
Back EMF voltage phase to phase / (rad/s)	0.112	Vrms / (rad/s)	ku
Torque constant	0.194	N.m / Arms	Kt
Short circuit current	31.6	Arms	Icc
Inductance Lq phase to phase (Back EMF voltage axis) *	2.35	mH	Lq
Inductance Ld phase to phase *	2.05	mH	Ld
Optimal phasing at permanent current	20	electrical degree	ψο
Optimal phasing at S6 current	22	electrical degree	ψm
Therm	al parameters	ÿ	
Motor thermal resistance	0.0818	K/W	Rth
Motor thermal time constant	1	min	Tth
	0.38	min	Tth w
Winding thermal time constant			
Winding thermal time constant Min water cooling flow (Inlet 25°C MAX, 30% glycol)	3.3	l/min	W_f

All data are given in typical values under standard conditions

* Phase to phase ** Tolerances ± 7.5% and rotor at 25°C

*** $\,$ minimum value with rotor at 125°C

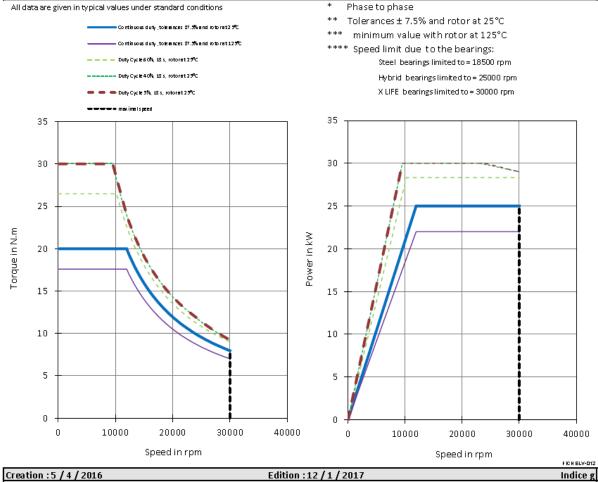
**** Speed limit due to the bearings:

FICH ELV-012

Creation:5/4/2016 Edition:12/1/2017 MGV430BAI Indice g

3.2.5. MGV635CAD Detailed Intrinsic Data

High speed brushless motor


M GV635CAD

ELECTRONIC DRIVE

DRIVE 50/75 - 400

/ Need protection module

S1 power **/***	25 / 20.9	kW	Ps1
S6 power **/***	30 / 25.1	kW	Ps6
Low speed torque ** / ***	20/16.7	N.m	Mo
Low speed S6 torque **/***	30 / 25.1	N.m	M ₀ S6
Base speed (S1)	11900	rpm	Nb
Max speed ****	30000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	49.4	Arms	10
S6 current at low speed	74.3	Arms	1,56
Winding resistance (25°C) *	0.189	Ω	Rb
Rotor inertia	0.00352	kg.m²	J
Thermal time constant	1.5	min	Tth
Motor mass	55	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	5.6	I/min	Wf

High speed brushless motor

MGV635CAD

ELECTRONIC DRIVE

DRIVE 50/75 - 400

Main c	haracteristic:	5	
S1 power **/***	25 / 20.9	kW	Ps1
S6 power **/***	30/25.1	kW	Ps6
Low speed torque ** / ***	20/16.7	N.m	Mo
Low speed S6 torque **/***	30/25.1	N.m	MaS6
Base speed (S1)	11900	rpm	Nb
Max speed ****	30000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	49.4	Arms	10
S6 current at low speed	74.3	Arms	1,56
Mechan	ical paramete	? ? ?	
	-		
Rotor inertia	0.00352	kg.m²	J
Motor mass	55	kg	M
Maximum speed with steel bearings	18500	rpm	N₂
Maximum speed with hybrid bearings	25000	rpm	N₂
Maximum speed with X LIFE bearings	30000	rpm	N₃
Maximum speed with Drive	30000	rpm	Nmax
Maximum mechanical speed	30000	rpm	Nmec
Electric	al parameter	28.	
Number of poles	6		
Winding resistance (25°C) *	0.189	Ω	Rb
Back EMF voltage phase to phase / 1000 rpm	24.5	Vrms / 1000 rpm	ke
Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s)	24.5 0.234	Vrms / 1000 rpm Vrms / (rad/s)	ke ku
Back EMF voltage phase to phase / (rad/s)	0.234	Vrms / (rad/s)	ku
Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current	0.234 0.405	Vrms / (rad/s) N.m / Arms	ku Kt
Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current	0.234 0.405 53	Vrms / (rad/s) N.m / Arms Arms	ku Kt Icc
Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) *	0.234 0.405 53 1.93	Vrms / (rad/s) N.m / Arms Arms mH	ku Kt Icc Lq
Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase *	0.234 0.405 53 1.93 1.7	Vrms / (rad/s) N.m / Arms Arms mH mH	ku Kt Icc Lq Ld
Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	0.234 0.405 53 1.93 1.7 15	Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ku Kt Icc Lg Ld ψο
Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	0.234 0.405 53 1.93 1.7 15	Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ku Kt Icc Lg Ld ψο
Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Therma	0.234 0.405 53 1.93 1.7 15 20	Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ku Kt Icc Lq Ld ψo ψm
Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Therma	0.234 0.405 53 1.93 1.7 15 20 al parameters	Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ku Kt Icc Lq Ld Wo Wm
Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Therma Motor thermal resistance Motor thermal time constant	0.234 0.405 53 1.93 1.7 15 20 al parameters 0.0753 1.5	Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ku Kt Icc Lq Ld Wo Wm

All data are given in typical values under standard conditions

* Phase to phase ** Tolerances ± 7.5% and rotor at 25°C

*** minimum value with rotor at 125°C

**** Speed limit due to the bearings:

FICH ELV-012

Edition:12/1/2017 MGV635CAD Creation:5/4/2016 Indice g

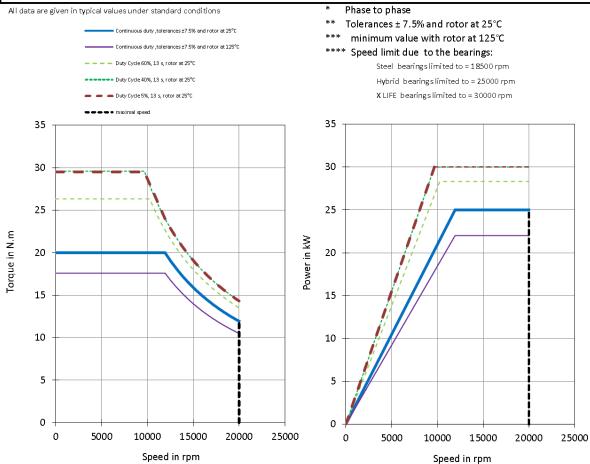
Creation: 5 / 4 / 2016

3.2.6. MGV635CAD Detailed Data with AC890

High speed brushless motor

MGV635CAD

ELECTRONIC DRIVE


890SD-432730E

FICHELV-012

Indice g

S1 power **/***	25/20.9	kW	Ps1
S6 power **/***	30/25.1	kW	Ps6
Low speed torque ** / ***	20 / 16.7	N.m	M_{o}
Low speed S6 torque **/***	29.5 / 24.7	N.m	M ₀ S6
Base speed (S1)	11900	rpm	Nb
Max speed ****	20000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	49.4	Arms	10
S6 current at low speed	73.1	A rms	1 ₀ S6
Winding resistance(25°C) *	0.189	Ω	Rb
Rotor inertia	0.00352	kg.m²	J
Thermal time constant	1.5	min	Tth
Motor mass	55	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	5.6	I/min	Wf

Edition: 12/1/2017

High speed brushless motor

MGV635CAD

ELECTRONIC DRIVE

890SD-432730E

Main o	characteristics	5	
S1 power **/***	25 / 20.9	kW	Ps1
S6 power **/***	30 / 25.1	kW	Ps6
Low speed torque ** / ***	20/16.7	N.m	Mo
Low speed S6 torque **/***	29.5 / 24.7	N.m	M _o S6
Base speed (S1)	11900	rpm	Nb
Max speed ****	20000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	49.4	Arms	10
S6 current at low speed	73.1	Arms	1,56
Mechan	ical paramete	ers	
Rotor inertia	0.00352	kg.m²	J
Motor mass	55	kg	M
Maximum speed with steel bearings	18500	rpm	N ₁
Maximum speed with hybrid bearings	25000	rpm	N ₂
Maximum speed with X LIFE bearings	30000	rpm	Na
Maximum speed with Drive	20000	rpm	Nmax
Maximum mechanical speed	30000	rpm	Nmec
	cal parameter	22	
Number of poles	6	_	
Winding resistance (25°C) *	0.189	Ω	Rb
Back EMF voltage phase to phase / 1000 rpm	24.5	Vrms / 1000 rpm	ke
Back EMF voltage phase to phase / (rad/s)	0.234	Vrms / (rad/s)	ku
Torque constant	0.405	N.m / Arms	Kt
Short circuit current	53	Arms	Icc
Inductance Lq phase to phase (Back EMF voltage axis) *	1.93	mH	Lq
Inductance Ld phase to phase *	1.7	mH	Ld
Optimal phasing at permanent current	15	electrical degree	ψο
Optimal phasing at S6 current	20	electrical degree	ψm
Therm	al parameters	5	
		K/W	Rth
Motor thermal resistance	0.0753		
	0.0753 1.5	min	Tth
Motor thermal resistance		min min	Tth Tth w
Motor thermal resistance Motor thermal time constant	1.5		

All data are given in typical values under standard conditions

*** minimum value with rotor at 125°C
*** Speed limit due to the bearings:

FICH ELV-012 Indice g

Creation:5/4/2016

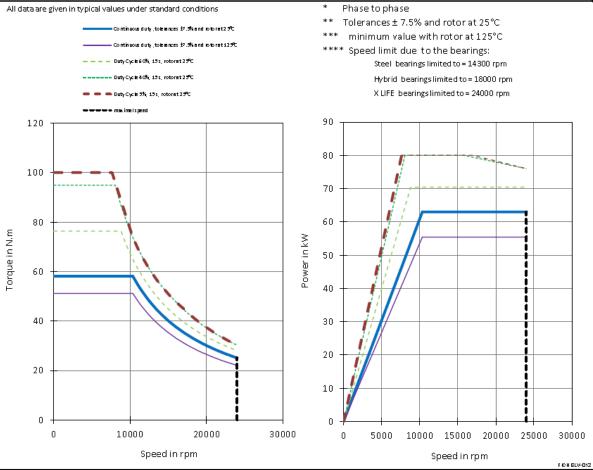
Edition:12/1/2017 MGV635CAD

^{*} Phase to phase ** Tolerances ± 7.5% and rotor at 25°C

Creation:5/4/2016

3.2.7. MGV840CAD Detailed Intrinsic Data

High speed brushless motor


MGV840CAD

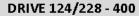
ELECTRONIC DRIVE

DRIVE 124/228 - 400

/ Need protection module

S1 power **/***	63 / 52.8	kW	Ps1
S6 power **/***	80/67	kW	Ps6
Low speed torque ** / ***	58 / 48.6	N.m	M.
Low speed S6 torque **/***	100/83.8	N.m	M _o S6
Base speed (S1)	10400	rpm	Nb
Max speed ****	24000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	123	Arms	10
S6 current at low speed	227	Arms	1,56
Winding resistance (25°C) *	0.0522	Ω	Rb
Rotor inertia	0.0186	kg.m²	J
Thermal time constant	2.4	min	Tth
Motor mass	115	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	11	l/min	W_f

Edition: 12/1/2017


Indice f

High speed brushless motor

MGV840CAD

ELECTRONIC DRIVE

Main o	haracteristic	5	
S1 power **/***	63/52.8	kW	Ps1
S6 power **/***	80/67	kW	Ps6
Low speed torque ** / ***	58 / 48.6	N.m	Mα
Low speed S6 torque **/***	100/83.8	N.m	M _o S6
Base speed (S1)	10400	rpm	Nb
Max speed ****	24000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	123	Arms	10
S6 current at low speed	227	Arms	1,56
	ical paramete	ers	
Rotor inertia	0.0186	kg.m²	J
Motor mass	115	kg	M
Maximum speed with steel bearings	14300	rpm	Νr
Maximum speed with hybrid bearings	18000	rpm	N ₂
Maximum speed with X LIFE bearings	24000	rpm	N ₃
Maximum speed with Drive	24000	rpm	Nmax
Maximum mechanical speed	24000	rpm	Nmec
Electric	cal parameter	35	
Number of poles	6		
Winding resistance (25°C) *	0.0522	Ω	Rb
Back EMF voltage phase to phase / 1000 rpm	28.3	Vrms / 1000 rpm	ke
Back EMF voltage phase to phase / (rad/s)	0.27	Vrms / (rad/s)	ku
Torque constant	0.472	N.m / Arms	Kt
Short circuit current	130	Arms	Icc
Inductance Lq phase to phase (Back EMF voltage axis) *	0.96	mH	Lq
Inductance Ld phase to phase *	0.8	mH	Ld
Optimal phasing at permanent current	20	electrical degree	ψο
Optimal phasing at S6 current	20	electrical degree	ψm
Therm	al parameters	y.	
Motor thermal resistance	0.0391	K/W	Rth
Motor thermal time constant	2.4	min	Tth
Winding thermal time constant	0.64	min	Tth w
=		V/min	W_f
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	11	y mm	rry

All data are given in typical values under standard conditions

Indice f Creation:5/4/2016 Edition:12/1/2017 MGV840CAD

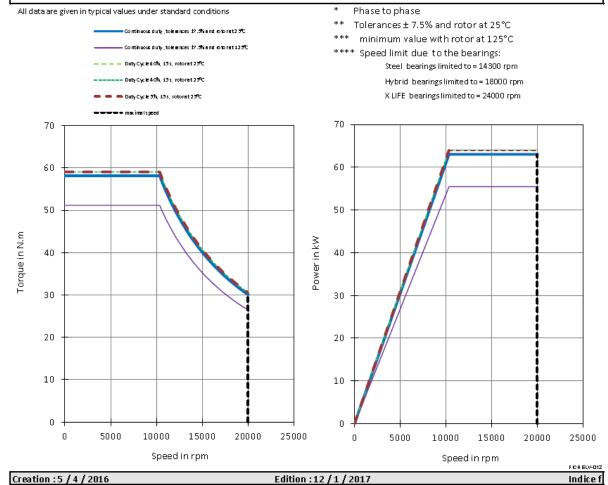
^{***} minimum value with rotor at 125°C

*** Speed limit due to the bearings:

^{*} Phase to phase ** Tolerances ± 7.5% and rotor at 25°C

3.2.8. MGV840CAD Detailed Data with AC890

High speed brushless motor


MGV840CAD

ELECTRONIC DRIVE

890SD-433105F

S1 power **/***	63/52.8	kW	Ps1
S6 power **/***	64/53.6	kW	Ps6
Low speed torque ** / ***	58 / 48.6	N.m	M_o
Low speed S6 torque **/***	59.5 / 49.9	N.m	M ₀ S6
Base speed (S1)	10400	rpm	Nb
Max speed ****	20000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	123	Arms	10
S6 current at low speed	126	Arms	1,56
Winding resistance (25°C) *	0.0522	Ω	Rb
Rotor inertia	0.0186	kg.m²	J
Thermal time constant	2.4	min	Tth
Motor mass	115	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	11	l/min	W_f

MGV840CAD

ELECTRONIC DRIVE

890SD-433105F

Main o	characteristics	S'	
S1 power **/***	63/52.8	kW	Ps1
S6 power **/***	64/53.6	kW	Ps6
Low speed torque ** / ***	58 / 48.6	N.m	Mo
Low speed S6 torque **/***	59.5 / 49.9	N.m	MaS6
Base speed (S1)	10400	rpm	Nb
Max speed ****	20000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	123	Arms	10
S6 current at low speed	126	Arms	1,56
Mechan	ical paramete	rs	
Rotor inertia	0.0186	kg.m²	J
Motor mass	115	kg	M
Maximum speed with steel bearings	14300	^y rpm	/// N ₇
Maximum speed with hybrid bearings	18000	rpm	Na Na
Maximum speed with X LIFE bearings	24000	rpm	1N2 Na
Maximum speed with A Line bearings Maximum speed with Drive	20000	rpm	Nmax
Maximum mechanical speed	24000	rpm	Nmec
El sotui	oal navawatan	w	
	cal parameter.	S	
Number of poles	6		
Winding resistance (25°C) *	0.0522	Ω	Rb
Back EMF voltage phase to phase / 1000 rpm	28.3	Vrms / 1000 rpm	ke
Back EMF voltage phase to phase / (rad/s)	0.27	Vrms / (rad/s)	ku
Torque constant	0.472	N.m / Arms	Kt
Short circuit current	130	Arms	Icc
Inductance Lq phase to phase (Back EMF voltage axis) *	0.96	mН	Lq
Inductance Ld phase to phase *	0.8	mH	Ld
Optimal phasing at permanent current	20	electrical degree	ψο
Optimal phasing at S6 current	20	electrical degree	ψm
Therm	al parameters	y	
Motor thermal resistance	0.0391	K/W	Rth
Motor thermal time constant	2.4	min	Tth
1400 dia = 46 con = 1400 c c c c c c 4	0.64	min	Tth w
Winding thermal time constant			
winding thermal time constant Min water cooling flow (Inlet 25°C MAX, 30% glycol)	11	l/min	Wf

All data are given in typical values under standard conditions

*** minimum value with rotor at 125°C

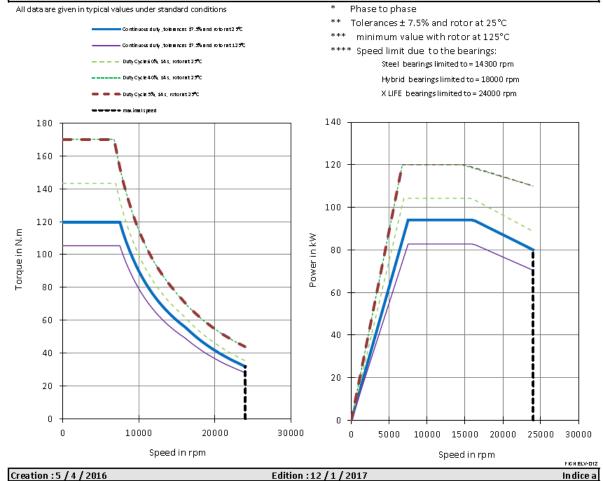
* Phase to phase ** Tolerances ± 7.5% and rotor at 25°C

**** Speed limit due to the bearings:

Indice f

3.2.9. MGV860CBD Detailed Intrinsic Data

High speed brushless motor


MGV860CBD

ELECTRONIC DRIVE

DRIVE 231/405 - 400

/ Need protection module

S1 power **/***	94 / 76.3	kW	Ps1
S6 power **/***	120/97.4	kW	Ps6
Low speed torque ** / ***	120/97.4	N.m	M_o
Low speed S6 torque **/***	170/138	N.m	M ₀ S6
Base speed (S1)	7500	rpm	Nb
Max speed ****	24000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	136	Arms	10
S6 current at low speed	202	Arms	1,56
Winding resistance (25°C) *	0.0717	Ω	Rb
Rotor inertia	0.0264	kg.m²	J
Thermal time constant	2.4	min	Tth
Motor mass	135	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	17	I/min	W_f

MGV860CBD

ELECTRONIC DRIVE

DRIVE 231/405 - 400

Mai	n characteristic	5	
S1 power **/***	94/76.3	kW	Ps1
S6 power **/***	120/97.4	kW	Ps6
Low speed torque ** / ***	120/97.4	N.m	Mo
Low speed S6 torque **/***	170/138	N.m	MaS6
Base speed (S1)	7500	rpm	Nb
Max speed ****	24000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	136	Arms	10
S6 current at low speed	202	Arms	1 ₀ S6
Mech	anical paramete	? ! %	
	0.0264	kg.m²	J
Rotor inertia Motor mass	0.0264 135	-	M
		kg rnm	
Maximum speed with steel bearings	14300	rpm	N ₂
Maximum speed with hybrid bearings	18000	rpm	N₂
Maximum speed with X LIFE bearings	24000	rpm	N₃ Nmax
Maximum speed with Drive	24000	rpm	
Maximum mechanical speed	24000	rpm	Nmec
Maximum mechanical speed	24000	rpm	wwec
·	²⁴⁰⁰⁰ trical parameter	·	wwec
. Elec Number of poles	trical parameter	x	nmec
Elec	trical parameter	·	Rb
. Elec Number of poles	trical parameter	x	
. Elec Number of poles Winding resistance (25°C) *	trical parameter 6 0.0717	x	Rb
Elec Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm	<i>trical parameter</i> 6 0.0717 54.3	Σ Ω Vrms / 1000 rpm	Rb ke
Elect Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant	trical parameter 6 0.0717 54.3 0.519	ΣΥ Ω Vrms / 1000 rpm Vrms / (rad/s)	Rb ke ku
Elect Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant	trical parameter 6 0.0717 54.3 0.519 0.882	Σ Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms	Rb ke ku Kt
Elec Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) *	trical parameter 6 0.0717 54.3 0.519 0.882 177	∑ Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms	Rb ke ku Kt Icc
Elec Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) *	trical parameter 6 0.0717 54.3 0.519 0.882 177 1.31	∑ Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH	Rb ke ku Kt Icc Lq
Elect Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase *	trical parameter 6 0.0717 54.3 0.519 0.882 177 1.31 1.13	Σ Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH	Rb ke ku Kt Icc Lq Ld
Elecc Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	trical parameter 6 0.0717 54.3 0.519 0.882 177 1.31 1.13 20	SV Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	Rb ke ku Kt Icc Lq Ld Wo
Elecc Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	trical parameter 6 0.0717 54.3 0.519 0.882 177 1.31 1.13 20 20	SV Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	Rb ke ku Kt Icc Lq Ld Wo
Elecc Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	trical parameter 6 0.0717 54.3 0.519 0.882 177 1.31 1.13 20 20 20 rmal parameters	Σ Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	Rb ke ku Kt Icc Lq Ld Wo Wm
Elecc Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current The Motor thermal resistance	trical parameter 6 0.0717 54.3 0.519 0.882 177 1.31 1.13 20 20 rmal parameters 0.0261	SY Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	Rb ke ku Kt Icc Lq Ld Wo Wm
Elecc Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Motor thermal resistance Motor thermal time constant	trical parameter 6 0.0717 54.3 0.519 0.882 177 1.31 1.13 20 20 rmal parameters 0.0261 2.4	SY Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	Rb ke ku Kt Icc Lq Ld ψo ψm

All data are given in typical values under standard conditions

*** minimum value with rotor at 125°C

* Phase to phase ** Tolerances ± 7.5% and rotor at 25°C

**** Speed limit due to the bearings:

Creation:5/4/2016 Edition:12/1/2017 MGV860CBD Indice a

Creation:5/4/2016

3.2.10. MGV860CBD Detailed Data with AC890

High speed brushless motor

MGV860CBD

ELECTRONIC DRIVE

890PXSA-43215M

/ Need protection module

S1 power **/***	94 / 76.3	kW	<i>Ps</i> 1
S6 power **/***	100/81.2	kW	Ps6
Low speed torque ** / ***	120/97.4	N.m	Mo
Low speed S6 torque **/***	161/131	N.m	M ₀ S6
Base speed (S1)	7500	rpm	Nb
Max speed ****	20000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	136	Arms	10
S6 current at low speed	189	Arms	1,56
Winding resistance (25°C) *	0.0717	Ω	Rb
Rotor inertia	0.0264	kg.m²	J
Thermal time constant	2.4	min	Tth
Motor mass	135	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	17	l/min	Wf

All data are given in typical values under standard conditions Phase to phase ** Tolerances ± 7.5% and rotor at 25°C Continuous duty, tole ances 17.5% and rotorat 2.5% *** minimum value with rotor at 125°C Continuous duty , tole ances 17.5% and roto rat 125°C **** Speed limit due to the bearings: - Duty Cycle 6 0%, 14 s, rotoret 25°C Steel bearings limited to = 14300 rpm Duty Cycle 40%, 14s, rotoret 25°C Hybrid bearings limited to = 18000 rpm X LIFE bearings limited to = 24000 rpm - Duty Cycle 5%, 14 s, rotoret 25°C 180 120 160 100 140 80 120 Torque in N.m Power in kW 100 60 80 60 40 40 20 20 0 0 5000 10000 15000 20000 25000 5000 10000 25000 15000 20000 Speed in rpm Speed in rpm FICH ELV-012

Edition: 12/1/2017

In dice a

MGV860CBD

ELECTRONIC DRIVE

890PXSA-43215M

Main	characteristics	3	
SI power **/***	94/76.3	kW	Ps1
S6 power **/***	100/81.2	kW	Ps6
Low speed torque ** / ***	120/97.4	N.m	Mo
Low speed S6 torque **/***	161/131	N.m	M _a S6
Base speed (S1)	7500	rpm	Nb
Max speed ****	20000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	136	Arms	10
S6 current at low speed	189	Arms	1 ₀ S6
Месћа	nical paramete	rs	
Rotor inertia	0.0264	kg.m²	J
Motor mass	135	kg	M
Maximum speed with steel bearings	14300	rpm	N _s
Maximum speed with hybrid bearings	18000	rpm	N₂
Maximum speed with X LIFE bearings	24000	rpm	N₃
Maximum speed with Drive	20000	rpm	Nmax
Maximum mechanical speed	24000	rpm	Nmec
Electr	ical parameter.	8	
Electr Number of poles	ical parameter. 6	2.	
	-	Ω	Rb
Number of poles	6		Rb ke
Number of poles Winding resistance (25°C) *	6 0.0717	Ω	
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm	6 0.0717 54.3	Ω Vrms / 1000 rpm	ke
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s)	6 0.0717 54.3 0.519	Ω Vrms / 1000 rpm Vrms / (rad/s)	ke ku
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant	6 0.0717 54.3 0.519 0.882	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms	ke ku Kt
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current	6 0.0717 54.3 0.519 0.882 177	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms	ke ku Kt Icc
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) *	6 0.0717 54.3 0.519 0.882 177 1.31	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH	ke ku Kt Icc Lg
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase *	6 0.0717 54.3 0.519 0.882 177 1.31	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH	ke ku Kt Icc Lq Ld
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	6 0.0717 54.3 0.519 0.882 177 1.31 1.13	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lg Ld ↓
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Lq phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	6 0.0717 54.3 0.519 0.882 177 1.31 1.13 20	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lg Ld ↓
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	6 0.0717 54.3 0.519 0.882 177 1.31 1.13 20 20	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld Wo Wm
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Motor thermal resistance	6 0.0717 54.3 0.519 0.882 177 1.31 1.13 20 20	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld ψo ψm
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Motor thermal resistance Motor thermal time constant	6 0.0717 54.3 0.519 0.882 177 1.31 1.13 20 20 mal parameters 0.0261 2.4	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld ψo ψm

All data are given in typical values under standard conditions

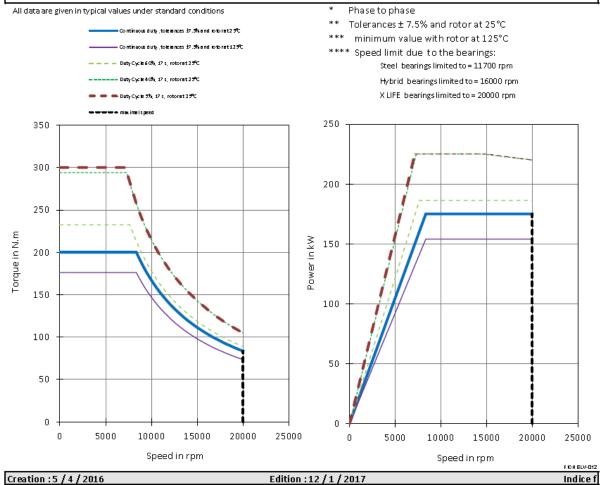
* Phase to phase ** Tolerances ± 7.5% and rotor at 25°C *** minimum value with rotor at 125°C

erances ± 7.5% and rotor at 25°C **** Speed limit due to the bearings:

FICH ELV-01Z

Creation:5/4/2016 Edition:12/1/2017 MGV860CBD

Indice a


3.2.11. MGV950CAX Detailed Intrinsic Data

MGV950CAX
ELECTRONIC DRIVE

DRIVE 455/822 - 400

S1 power **/***	175/143	kW	Ps1
S6 power **/***	225/183	kW	Ps6
Low speed torque ** / ***	200/163	N.m	M.
Low speed S6 torque **/***	300/244	N.m	M _o S6
Base speed (S1)	8350	rpm	Nb
Max speed ****	20000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	454	Arms	10
S6 current at low speed	821	Arms	1,56
Winding resistance (25°C) *	0.00747	Ω	Rb
Rotor inertia	0.063	kg.m²	J
Thermal time constant	3.2	min	Tth
Motor mass	270	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	18	I/min	W_f

MGV950CAX

ELECTRONIC DRIVE

DRIVE 455/822 - 400

Main o	haracteristics	8	
S1 power **/***	175/143	kW	Ps1
S6 power **/***	225/183	kW	Ps6
Low speed torque ** / ***	200/163	N.m	Mo
Low speed S6 torque **/***	300/244	N.m	M _o S6
Base speed (S1)	8350	rpm	Nb
Max speed ****	20000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	454	Arms	10
S6 current at low speed	821	Arms	1,56
Machan	ical manamata	****	
Mecnan	cal paramete	<i>IS</i>	
Rotor inertia	0.063	kg.m²	J
Motor mass	270	kg	M
Maximum speed with steel bearings	11700	rpm	N _s
Maximum speed with hybrid bearings	16000	rpm	N₂
Maximum speed with X LIFE bearings	20000	rpm	N₃
Maximum speed with Drive	20000	rpm	Nmax
Maximum mechanical speed	20000	rpm	Nmec
Electric	al parameter	S	
Number of poles	6		
Winding resistance (25°C) *	0.00747	Ω	Rb
Back EMF voltage phase to phase / 1000 rpm	27.8	Vrms / 1000 rpm	
	27.0	7111107 2000 1p111	ke
Back EMF voltage phase to phase / (rad/s)	0.265	Vrms / (rad/s)	ke ku
Back EMF voltage phase to phase / (rad/s) Torque constant		, ,	
	0.265	Vrms / (rad/s)	ku
Torque constant Short circuit current	0.265 0.441	Vrms / (rad/s) N.m / Arms	ku Kt
Torque constant Short circuit current	0.265 0.441 368	Vrms / (rad/s) N.m / Arms Arms	ku Kt Icc
Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase *	0.265 0.441 368 0.294	Vrms / (rad/s) N.m / Arms Arms mH	ku Kt Icc Lq
Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) *	0.265 0.441 368 0.294 0.278	Vrms / (rad/s) N.m / Arms Arms mH mH	ku Kt Icc Lq Ld
Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	0.265 0.441 368 0.294 0.278 20	Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ku Kt Icc Lq Ld ψο
Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	0.265 0.441 368 0.294 0.278 20 30	Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ku Kt Icc Lq Ld ψο
Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Therma	0.265 0.441 368 0.294 0.278 20 30	Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ku Kt Icc Lq Ld ψo ψm
Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Therma	0.265 0.441 368 0.294 0.278 20 30	Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ku Kt Icc Lq Ld Wo Wm
Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Therma Motor thermal resistance Motor thermal time constant	0.265 0.441 368 0.294 0.278 20 30 al parameters 0.0137 3.2	Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ku Kt Icc Lq Ld Wo Wm

All data are given in typical values under standard conditions

* Phase to phase ** Tolerances ± 7.5% and rotor at 25°C

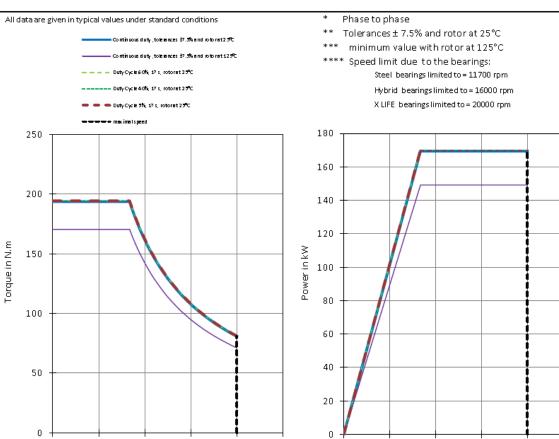
*** minimum value with rotor at 125°C
**** Speed limit due to the bearings:

FICH ELV-012

Creation:5/4/2016 Edition: 12 / 1 / 2017 MGV950CAX Indice f

3.2.12. MGV950CAX Detailed Data with AC890

High speed brushless motor


MGV950CAX

ELECTRONIC DRIVE

890PXSA-43480M

S1 power **/***	169/138	kW	Ps1
S6 power **/***	170/139	kW	Ps6
Low speed torque ** / ***	193/158	N.m	M,
Low speed S6 torque **/***	195/159	N.m	M ₀ S6
Base speed (S1)	8350	rpm	Nb
Max speed ****	20000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	435	Arms	10
S6 current at low speed	440	Arms	1 ₀ S6
Winding resistance (25°C) *	0.00747	Ω	Rb
Rotor inertia	0.063	kg.m²	J
Thermal time constant	3.2	min	Tth
Motor mass	270	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	18	l/min	Wf

Speed in rpm Speed in rpm
Creation: 5 / 4 / 2016 Edition: 12 / 1 / 2017 Indice e

5000

10000

15000

25000

25000

5000

10000

15000

20000

MGV950CAX

ELECTRONIC DRIVE

890PXSA-43480M

Main o	characteristic:	5	
S1 power **/***	169/138	kW	Ps1
S6 power **/***	170/139	kW	Ps6
Low speed torque ** / ***	193/158	N.m	Mo
Low speed S6 torque **/***	195/159	N.m	M _a S6
Base speed (S1)	8350	rpm	Nb
Max speed ****	20000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	435	Arms	10
S6 current at low speed	440	Arms	1 ₀ S6
Mechan	ical paramete	ers	
Rotor inertia	0.063	kg.m²	J
Motor mass	270	kg	М
Maximum speed with steel bearings	11700	rpm	N _t
Maximum speed with hybrid bearings	16000	rpm	N ₂
Maximum speed with X LIFE bearings	20000	rpm	N ₃
Maximum speed with Drive	20000	rpm	Nmax
Maximum mechanical speed	20000	rpm	Nmec
Electric	cal parameter	NS	
Number of poles	- 6		
Winding resistance (25°C) *	0.00747	Ω	Rb
Back EMF voltage phase to phase / 1000 rpm	27.8	Vrms / 1000 rpm	ke
Back EMF voltage phase to phase / (rad/s)	0.265	Vrms / (rad/s)	ku
Torque constant	0.444	N.m / Arms	Kt
Short circuit current	368	Arms	Icc
Inductance Lq phase to phase (Back EMF voltage axis) *	0.294	mH	Lq
Inductance Ld phase to phase *	0.278	mН	Lď
Optimal phasing at permanent current	20	electrical degree	ψο
Optimal phasing at S6 current	20	electrical degree	ψm
Therm	al parameters	ÿ	
Motor thermal resistance	0.0137	K/W	Rth
Motor thermal time constant	3.2	min	Tth
Winding thermal time constant	0.74	min	Tth w
	18	l/min	W_f
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	10	,	

All data are given in typical values under standard conditions

*** minimum value with rotor at 125°C

* Phase to phase
** Tolerances ± 7.5% and rotor at 25°C

**** Speed limit due to the bearings:

FICH ELV-012

Creation:5/4/2016

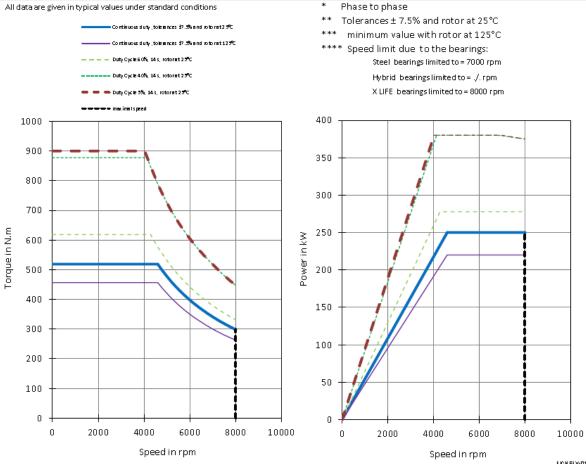
Edition:12/1/2017 MGV950CAX

Creation:5/4/2016

3.2.13. MGV966DAX Detailed Intrinsic Data

High speed brushless motor


MGV966DAX


ELECTRONIC DRIVE

Drive 506/983 - 400

Indice d

Edition: 12 / 1 / 2017

MGV966DAX

ELECTRONIC DRIVE

Drive 506/983 - 400

Main c	haracteristic:	5	
S1 power **/***	250/203	kW	Ps1
S6 power **/***	380/309	kW	Ps6
Low speed torque ** / ***	520 / 422	N.m	Mo
Low speed S6 torque **/***	900/731	N.m	M _o S6
Base speed (S1)	4600	rpm	Nb
Max speed ****	8000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	505	Arms	10
S6 current at low speed	982	Arms	1,56
Mechani	ical paramete	ers	
Rotor inertia	0.076	kg.m²	J
Motor mass	300	kg	M
Maximum speed with steel bearings	7000	rpm	N,
Maximum speed with hybrid bearings	-	rpm	N ₂
Maximum speed with X LIFE bearings	8000	rpm	N₃
Maximum speed with Drive	8000	rpm	Nmax
Maximum mechanical speed	8000	rpm	Nmec
TT 1			
	al parameter	S	
Number of poles	8		
Number of poles Winding resistance (25°C) *	8 0.0135	Ω	Rb
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm	8 0.0135 64.1	Ω Vrms / 1000 rpm	ke
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s)	8 0.0135 64.1 0.612	Ω Vrms / 1000 rpm Vrms / (rad/s)	ke ku
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant	8 0.0135 64.1 0.612 1.03	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms	ke ku Kt
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current	8 0.0135 64.1 0.612 1.03 665	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms	ke ku Kt Icc
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) *	8 0.0135 64.1 0.612 1.03 665 0.299	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH	ke ku Kt Icc Lq
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase *	8 0.0135 64.1 0.612 1.03 665 0.299	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH	ke ku Kt Icc Lq Ld
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current	8 0.0135 64.1 0.612 1.03 665 0.299 0.266 15	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree	ke ku Kt Icc Lg Ld U o
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase *	8 0.0135 64.1 0.612 1.03 665 0.299	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH	ke ku Kt Icc Lq Ld
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	8 0.0135 64.1 0.612 1.03 665 0.299 0.266 15	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lg Ld U o
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	8 0.0135 64.1 0.612 1.03 665 0.299 0.266 15	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lg Ld U o
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	8 0.0135 64.1 0.612 1.03 665 0.299 0.266 15 20	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld Wo Wm
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Motor thermal resistance	8 0.0135 64.1 0.612 1.03 665 0.299 0.266 15 20 al parameters 0.0099	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld Wo Wm
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Motor thermal resistance Motor thermal time constant	8 0.0135 64.1 0.612 1.03 665 0.299 0.266 15 20 al parameters 0.0099 3	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld Wo Wm

All data are given in typical values under standard conditions

*** minimum value with rotor at 125°C

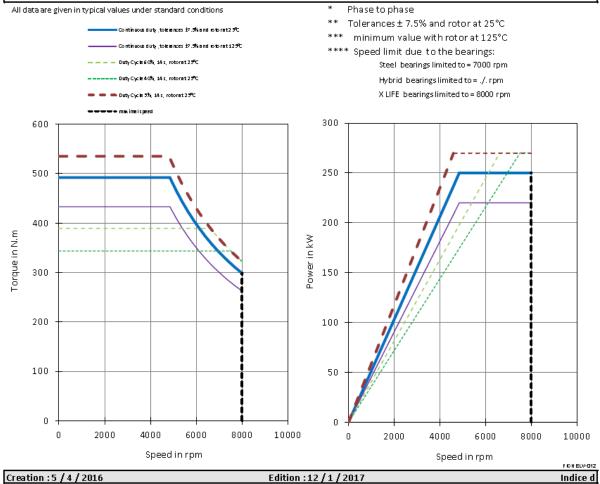
* Phase to phase ** Tolerances ± 7.5% and rotor at 25°C

**** Speed limit due to the bearings:

FICH ELV-012 Creation:5/4/2016 Edition:12/1/2017 MGV966DAX Indice d

3.2.14. MGV966DAX Detailed Data with AC890

High speed brushless motor


MGV966DAX

ELECTRONIC DRIVE

890PXSA-43580M

S1 power **/***	250/193	kW	Ps1
S6 power **/***	270 / 208	kW	Ps6
Low speed torque ** / ***	520 / 400	N.m	M,
Low speed S6 torque **/***	535 / 412	N.m	M _o S6
Base speed (S1)	4600	rpm	Nb
Max speed ****	8000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	505	Arms	10
S6 current at low speed	520	Arms	1,56
Winding resistance(25°C) *	0.0135	Ω	Rb
Rotor inertia	0.076	kg.m²	J
Thermal time constant	3	min	Tth
Motor mass	300	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	28	l/min	W_f

MGV966DAX

ELECTRONIC DRIVE

890PXSA-43580M

Main o	characteristic	S	
S1 power **/***	250/193	kW	Ps1
S6 power **/***	270/208	kW	Ps6
Low speed torque ** / ***	520 / 400	N.m	Mo
Low speed S6 torque **/***	535 / 412	N.m	M _o S6
Base speed (S1)	4600	rpm	Nb
Max speed ****	8000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	505	Arms	10
S6 current at low speed	520	Arms	1 ₀ S6
Mechan	ical paramete	21'S	
Rotor inertia	0.076	kg.m²	J
Motor mass	300	kg	M
Maximum speed with steel bearings	7000	rpm	N,
Maximum speed with hybrid bearings	-	rpm	N ₂
Maximum speed with X LIFE bearings	8000	rpm	N ₃
Maximum speed with Drive	8000	rpm	Nmax
Maximum mechanical speed	8000	rpm	Nmec
Electric	cal parameter		
Number of poles	8		
Winding resistance (25°C) *	0.0135	Ω	Rb
Back EMF voltage phase to phase / 1000 rpm	64.1	Vrms / 1000 rpm	ke
Back EMF voltage phase to phase / (rad/s)	0.612	Vrms / (rad/s)	ku
Torque constant	1.03	N.m / Arms	Kt
Short circuit current	665	Arms	lcc
Inductance Lq phase to phase (Back EMF voltage axis) *	0.299	mН	Lq
Inductance Ld phase to phase *	0.266	mН	Ld
Optimal phasing at permanent current	15	electrical degree	ψο
Optimal phasing at S6 current	15	electrical degree	ψm
Therm	al parameter:	s	
Motor thermal resistance	0.0099	K/W	Rth
Motor thermal time constant	3	min	Tth
Winding thermal time constant	0.62	min	Tth w
	28	l/min	W_f
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	20	•	

All data are given in typical values under standard conditions

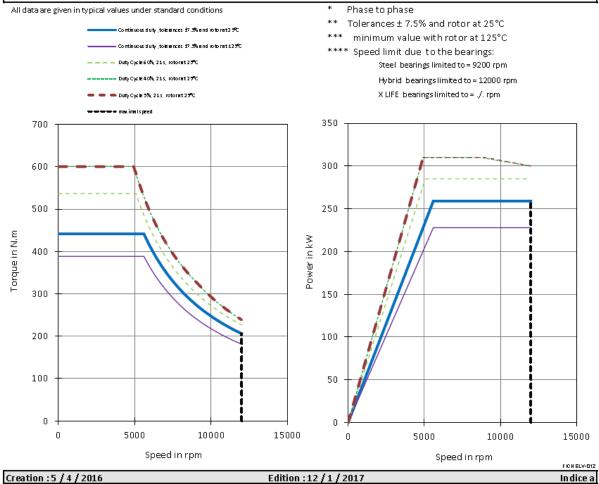
* Phase to phase ** Tolerances ± 7.5% and rotor at 25°C

*** minimum value with rotor at 125°C

**** Speed limit due to the bearings:

Creation:5/4/2016 Edition:12/1/2017 MGV966DAX Indice d

3.2.15. MGVA50DAX Detailed Intrinsic Data


High speed brushless motor **M GVA50DAX**

ELECTRONIC DRIVE

DRIVE 559/799 - 400

S1 power **/***	259/217	kW	Ps1
S6 power **/***	310/260	kW	Ps6
Low speed torque ** / ***	440/369	N.m	Mo
Low speed S6 torque **/***	600/503	N.m	M ₀ S6
Base speed (S1)	5600	rpm	Nb
Max speed ****	12000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	558	Arms	10
S6 current at low speed	798	Arms	1,56
Winding resistance (25°C) *	0.00884	Ω	Rb
Rotor inertia	0.292	kg.m²	J
Thermal time constant	4	min	Tth
Motor mass	395	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	28	l/min	W_f

MGVA50DAX

ELECTRONIC DRIVE

DRIVE 559/799 - 400

Main c	characteristic:	5	
S1 power **/***	259/217	kW	Ps1
S6 power **/***	310/260	kW	Ps6
Low speed torque ** / ***	440/369	N.m	M_o
Low speed S6 torque **/***	600/503	N.m	M _o S6
Base speed (S1)	5600	rpm	Nb
Max speed ****	12000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	558	Arms	10
S6 current at low speed	798	Arms	1,56
Mechan	ical paramete	ers	
Rotor inertia	0.292	kg.m²	J
Motor mass	395	kg	M
Maximum speed with steel bearings	9200	rpm	N _z
Maximum speed with hybrid bearings	12000	rpm	N ₂
Maximum speed with X LIFE bearings	-	rpm	N₃
Maximum speed with Drive	12000	rpm	Nmax
Maximum mechanical speed	13000	rpm	Nmec
T14 . 1			
	cal parameter	22.	
Number of poles	8		
Number of poles Winding resistance (25°C) *	8 0.00884	Ω	Rb
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm	8 0.00884 50.9	Ω Vrms / 1000 rpm	ke
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s)	8 0.00884 50.9 0.486	Ω Vrms / 1000 rpm Vrms / (rad/s)	ke ku
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant	8 0.00884 50.9 0.486 0.789	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms	ke ku Kt
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current	8 0.00884 50.9 0.486 0.789 520	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms	ke ku Kt Icc
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) *	8 0.00884 50.9 0.486 0.789 520 0.272	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH	ke ku Kt Icc Lq
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase *	8 0.00884 50.9 0.486 0.789 520 0.272	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH	ke ku Kt Icc Lq Ld
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current	8 0.00884 50.9 0.486 0.789 520 0.272 0.27	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree	ke ku Kt Icc Lq Ld Ųo
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase *	8 0.00884 50.9 0.486 0.789 520 0.272	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH	ke ku Kt Icc Lq Ld
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	8 0.00884 50.9 0.486 0.789 520 0.272 0.27	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld Ųo
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Motor thermal resistance	8 0.00884 50.9 0.486 0.789 520 0.272 0.27 20	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld Ųo
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	8 0.00884 50.9 0.486 0.789 520 0.272 0.27 20 20	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld ψo ψm
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Motor thermal resistance	8 0.00884 50.9 0.486 0.789 520 0.272 0.27 20 20 al parameters	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld Wo Wm
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Motor thermal resistance Motor thermal time constant	8 0.00884 50.9 0.486 0.789 520 0.272 0.27 20 20 al parameters 0.01055 4	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lg Ld Wo Wm

All data are given in typical values under standard conditions

* Phase to phase ** Tolerances ± 7.5% and rotor at 25°C

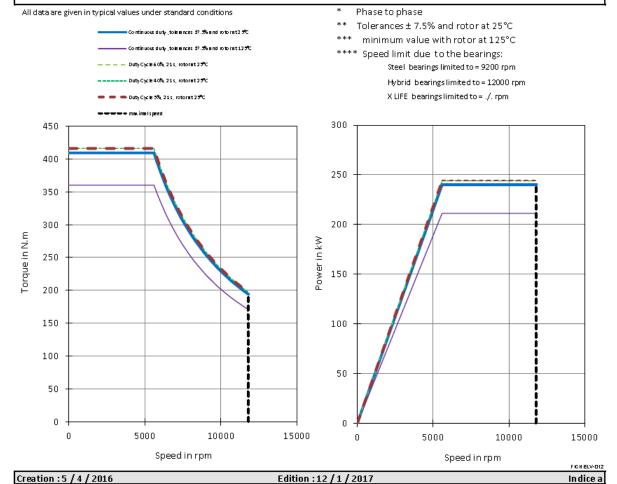
*** minimum value with rotor at 125°C
**** Speed limit due to the bearings:

FICH ELV-012

Creation:5/4/2016 Edition: 12/1/2017 MGVA50DAX

3.2.16. MGVA50DAX Detailed Data with AC890

High speed brushless motor


MGVA50DAX

ELECTRONIC DRIVE

890PXSA-43580M

S1 power **/***	240/199	kW	Ps1
S6 power **/***	244/203	kW	Ps6
Low speed torque ** / ***	412/342	N.m	Mo
Low speed S6 torque **/***	416/345	N.m	M _o S6
Base speed (S1)	5600	rpm	Nb
Max speed ****	11800	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	519	Arms	10
S6 current at low speed	525	Arms	1,56
Winding resistance (25°C) *	0.00884	Ω	Rb
Rotor inertia	0.292	kg.m²	J
Thermal time constant	4	min	Tth
Motor mass	395	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	28	I/min	W_f

MGVA50DAX

ELECTRONIC DRIVE

890PXSA-43580M

Main o	haracteristic:	5	
S1 power **/***	240/199	kW	Ps1
S6 power **/***	244/203	kW	Ps6
Low speed torque ** / ***	412/342	N.m	Mo
Low speed S6 torque **/***	416/345	N.m	M _o S6
Base speed (S1)	5600	rpm	Nb
Max speed ****	11800	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	519	Arms	10
S6 current at low speed	525	Arms	1,56
Mechan	ical paramete	ers	
Rotor inertia	0.292	kg.m²	J
Motor mass	395	kg	M
Maximum speed with steel bearings	9200	rpm	N ₁
Maximum speed with hybrid bearings	12000	rpm	N₂
Maximum speed with X LIFE bearings	-	rpm	N₃
Maximum speed with Drive	11800	rpm	Nmax
Maximum mechanical speed	13000	rpm	Nmec
Electric	cal parameter	. S.	
Number of poles	8		
Winding resistance (25°C) *	0.00884	Ω	Rb
Back EMF voltage phase to phase / 1000 rpm	50.9	Vrms / 1000 rpm	ke
Back EMF voltage phase to phase / (rad/s)	0.486	Vrms / (rad/s)	ku
Torque constant	0.794	N.m / Arms	Kt
Short circuit current	520	Arms	Icc
Inductance Lq phase to phase (Back EMF voltage axis) *	0.272	mН	Lg
Inductance Ld phase to phase *	0.27	mН	Ld
Optimal phasing at permanent current	20	electrical degree	ψο
Optimal phasing at S6 current	20	electrical degree	ψm
Therm	al parameters	S	
Therm Motor thermal resistance	al parameters 0.01055	K/W	Rth
			Rth Tth
Motor thermal resistance	0.01055	K/W	
Motor thermal resistance Motor thermal time constant	0.01055 4	K/W min	Tth

All data are given in typical values under standard conditions

* Phase to phase

** Tolerances ± 7.5% and rotor at 25°C

*** minimum value with rotor at 125°C

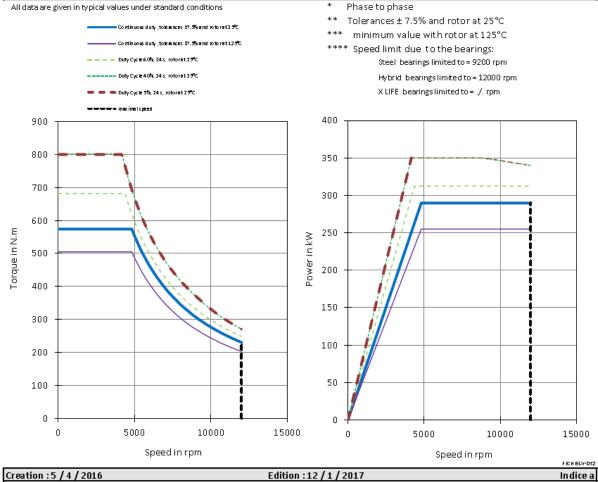
**** Speed limit due to the bearings:

FICH ELV-012

Creation : 5 / 4 / 2016 Edition : 12 / 1 / 2017 MGVA50DAX Indice a

3.2.17. MGVA50DBY Detailed Intrinsic Data

High speed brushless motor


MGVA50DBY

ELECTRONIC DRIVE

DRIVE 560/870 - 400

/ Need protection module

S1 power **/***	290/237	kW	Ps1
S6 power **/***	350/287	kW	Ps6
Low speed torque ** / ***	570 / 467	N.m	M_o
Low speed S6 torque **/***	800/656	N.m	M _o S6
Base speed (S1)	4820	rpm	Nb
Max speed ****	12000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	560	Arms	10
S6 current at low speed	870	Arms	1,56
Winding resistance (25°C) *	0.00931	Ω	Rb
Rotor inertia	0.292	kg.m²	J
Thermal time constant	4	min	Tth
Motor mass	395	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	28	l/min	W_f

MGVA50DBY

ELECTRONIC DRIVE

DRIVE 560/870 - 400

Main o	characteristic	5	
SI power **/***	290 / 237	kW	Ps1
S6 power **/***	350/287	kW	Ps6
Low speed torque ** / ***	570/467	N.m	Mo
Low speed S6 torque **/***	800/656	N.m	M _o S6
Base speed (S1)	4820	rpm	Nb
Max speed ****	12000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	560	Arms	10
S6 current at low speed	870	Arms	1,56
Mechan	ical paramete	ers	
Rotor inertia	0.292	kg.m²	J
Motor mass	395	kg	M
Maximum speed with steel bearings	9200	rpm	N ₁
Maximum speed with hybrid bearings	12000	rpm	N ₂
Maximum speed with X LIFE bearings		rpm	N₃
Maximum speed with Drive	12000	rpm	Nmax
Maximum mechanical speed	13000	rpm	Nmec
Electric	cal parameter	22	
Number of poles	8		
Winding resistance (25°C) *	0.00931	Ω	Rb
Back EMF voltage phase to phase / 1000 rpm	66.1	Vrms / 1000 rpm	ke
Back EMF voltage phase to phase / (rad/s)	0.631	Vrms / (rad/s)	ku
Torque constant	1.02	N.m / Arms	Kt
Short circuit current	589	Arms	Icc
Inductance Lq phase to phase (Back EMF voltage axis) *	0.308	mH	Lq
Inductance Ld phase to phase *	0.31	mH	Ld
Optimal phasing at permanent current	20	electrical degree	ψο
Optimal phasing at S6 current	20	electrical degree	ψm
Therm	al parameters	ÿ	
Motor thermal resistance	0.011	K/W	Rth
Motor thermal time constant	4	min	Tth
	1	min	Tth w
Winding thermal time constant			
Winding thermal time constant Min water cooling flow (Inlet 25°C MAX, 30% glycol)	28	l/min	Wf

All data are given in typical values under standard conditions

* Phase to phase ** Tolerances ± 7.5% and rotor at 25°C **** Speed limit due to the bearings:

Creation:5/4/2016 Edition:12/1/2017 MGVA50DBY Indice a

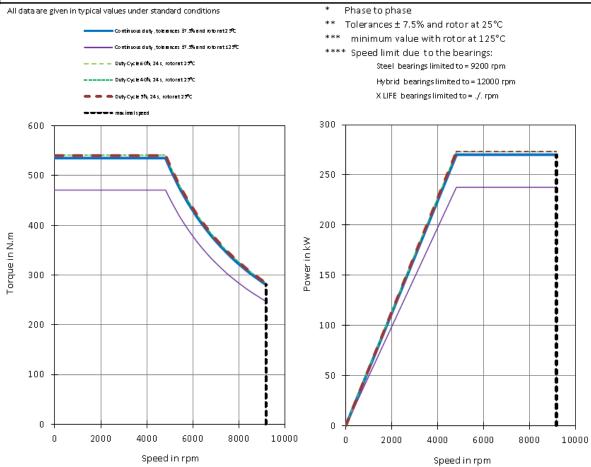
^{***} minimum value with rotor at 125°C

Creation:5/4/2016

3.2.18. MGVA50DBY Detailed Data with AC890

High speed brushless motor

MGVA50DBY


ELECTRONIC DRIVE

890PXSA-43580M

In dice a

S1 power **/***	270 / 220	kW	Ps1
S6 power **/***	273 / 222	kW	Ps6
Low speed torque ** / ***	535 / 435	N.m	M.
Low speed S6 torque **/***	540 / 439	N.m	M _o S6
Base speed (S1)	4820	rpm	Nb
Max speed ****	9180	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	520	Arms	I o
S6 current at low speed	526	Arms	1,56
Winding resistance(25°C) *	0.00931	Ω	Rb
Rotor inertia	0.292	kg.m²	J
Thermal time constant	4	min	Tth
Motor mass	395	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	28	l/min	W_f

Edition : 12 / 1 / 2017

MGVA50DBY

ELECTRONIC DRIVE

890PXSA-43580M

Main o	characteristic:	8	
SI power **/***	270 / 220	kW	Ps1
S6 power **/***	273 / 222	kW	Ps6
Low speed torque ** / ***	535 / 435	N.m	Mo
Low speed S6 torque **/***	540/439	N.m	M _a S6
Base speed (S1)	4820	rpm	Nb
Max speed ****	9180	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	520	Arms	10
S6 current at low speed	526	Arms	1 ₀ S6
Mechan	ical paramete	ers	
Rotor inertia	0.292	kg.m²	J
Motor mass	395	kg	М
Maximum speed with steel bearings	9200	rpm	N _t
Maximum speed with hybrid bearings	12000	rpm	N ₂
Maximum speed with X LIFE bearings	-	rpm	N ₃
Maximum speed with Drive	9180	rpm	Nmax
Maximum mechanical speed	13000	rpm	Nmec
Electric	cal parameter	X	
Number of poles	8		
Winding resistance (25°C) *	0.00931	Ω	Rb
Back EMF voltage phase to phase / 1000 rpm	66.1	Vrms / 1000 rpm	ke
Back EMF voltage phase to phase / (rad/s)	0.631	Vrms / (rad/s)	ku
Torque constant	1.03	N.m / Arms	Kt
Short circuit current	589	Arms	Icc
Inductance Lq phase to phase (Back EMF voltage axis) *	0.308	mН	Lq
Inductance Ld phase to phase *	0.31	mН	Ld
Optimal phasing at permanent current	20	electrical degree	ψο
Optimal phasing at S6 current	20	electrical degree	ψm
Therm	al parameters	5	
Motor thermal resistance	0.011	K/W	Rth
Motor thermal time constant	4	min	Tth
	1	min	Tth w
Winding thermal time constant	1		
Winding thermal time constant Min water cooling flow (Inlet 25°C MAX, 30% glycol)	28	l/min	Wf

All data are given in typical values under standard conditions

*** minimum value with rotor at 125°C

* Phase to phase
** Tolerances ± 7.5% and rotor at 25°C **** Speed limit due to the bearings:

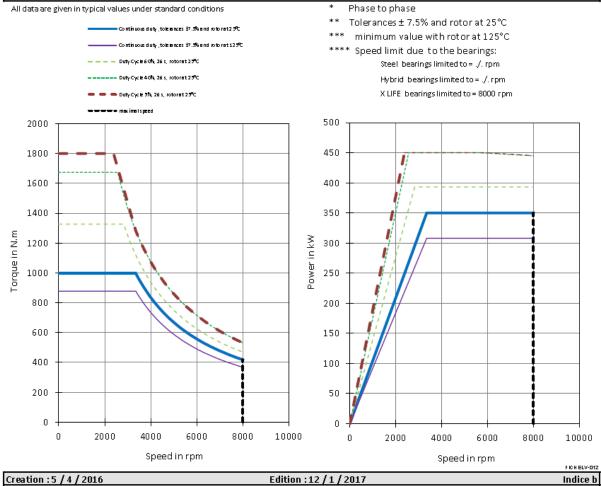
Indice a

Creation:5/4/2016 Edition: 12/1/2017 MGVA50DBY

3.2.19. MVB40HAA Detailed Intrinsic Data

High speed brushless motor

MGVB40HAA


ELECTRONIC DRIVE

DRIVE 722/1410 - 400

/ Need protection module

S1 power **/***	350/284	kW	Ps1
S6 power **/***	450/365	kW	Ps6
Low speed torque ** / ***	1000/812	N.m	Mο
Low speed S6 torque **/***	1800/1460	N.m	M _o S6
Base speed (S1)	3350	rpm	Nb
Max speed ****	8000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	722	Arms	10
S6 current at low speed	1410	Arms	1 ₀ S6
Winding resistance(25°C) *	0.00617	Ω	Rb
Rotor inertia	0.84	kg.m²	J
Thermal time constant	5	min	Tth
Motor mass	650	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	40	l/min	W_f

MGVB40HAA

ELECTRONIC DRIVE

DRIVE 722/1410 - 400

Main (characteristics	Y	
S1 power **/***	350/284	kW	Ps1
S6 power **/***	450/365	kW	Ps6
Low speed torque ** / ***	1000/812	N.m	Mo
Low speed S6 torque **/***	1800/1460	N.m	M₀S6
Base speed (S1)	3350	rpm	Nb
Max speed ****	8000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	722	Arms	10
S6 current at low speed	1410	Arms	1,56
Mechan	ical paramete	rs	
Rotor inertia	0.84	kg.m²	J
Motor mass	650	kq	M
Maximum speed with steel bearings	-	rpm	 Na
Maximum speed with hybrid bearings	-	rpm	Na
Maximum speed with X LIFE bearings	8000	rpm	N ₃
Maximum speed with Drive	8000	rpm	Nmax
Maximum mechanical speed	8000	rpm	Nmec
Electri	cal parameter:	8	
Number of poles	16		
Winding resistance (25°C) *	0.00617	Ω	Rb
Back EMF voltage phase to phase / 1000 rpm	86.1	Vrms / 1000 rpm	ke
Back EMF voltage phase to phase / (rad/s)	0.822	Vrms / (rad/s)	ku
Torque constant	1.39	N.m / Arms	Kt
Short circuit current	764	Arms	Icc
Inductance Lq phase to phase (Back EMF voltage axis) *	0.185	mH	Lq
Inductance Ld phase to phase *	0.156	mH	Ld
Optimal phasing at permanent current	10	electrical degree	ψο
Optimal phasing at S6 current	20	electrical degree	ψm
Therm	al parameters	,	
Motor thermal resistance	0.0078	K/W	Rth
Motor thermal time constant	5	min	Tth
Winding thermal time constant	1.1	min	Tth w
	40	l/min	W_f
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	-10		

All data are given in typical values under standard conditions

* Phase to phase ** Tolerances ± 7.5% and rotor at 25°C

*** minimum value with rotor at 125°C

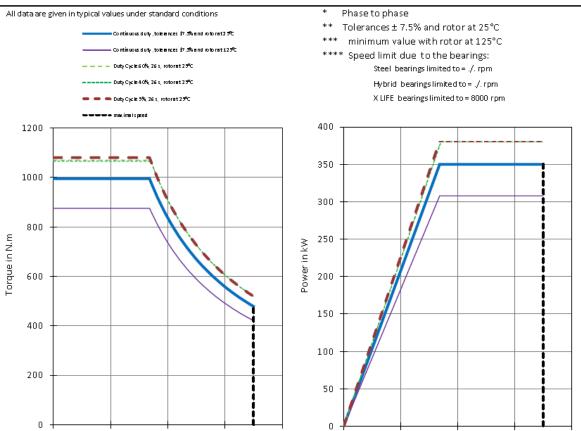
**** Speed limit due to the bearings:

FICH ELV-012

Creation:5/4/2016 Edition:12/1/2017 MGVB40HAA Indice b

3.2.20. MGVB40HAA Detailed Data with AC890

High speed brushless motor


MGVB40HAA

ELECTRONIC DRIVE

2X890PXSA-43420M

S1 power **/***	350/283	kW	Ps1
S6 power **/***	380/308	kW	Ps6
Low speed torque ** / ***	1000/810	N.m	Mo
Low speed S6 torque **/***	1080/874	N.m	M ₀ S6
Base speed (S1)	3350	rpm	Nb
Max speed ****	6990	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	722	Arms	10
S6 current at low speed	780	Arms	1,56
Winding resistance (25°C) *	0.00617	Ω	Rb
Rotor inertia	0.84	kg.m²	J
Thermal time constant	5	min	Tth
Motor mass	650	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	40	l/min	W_f

Edition: 12/1/2017

8000

2000

4000

Speed in rpm

6000

8000

FICH ELV-012

In dice a

2000

Creation:5/4/2016

4000

Speed in rpm

6000

MGVB40HAA

ELECTRONIC DRIVE

2X890PXSA-43420M

Main o	characteristics	y	
S1 power **/***	350/283	kW	Ps1
S6 power **/***	380/308	kW	Ps6
Low speed torque ** / ***	1000/810	N.m	Mo
Low speed S6 torque **/***	1080/874	N.m	M _o S6
Base speed (S1)	3350	rpm	Nb
Max speed ****	6990	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	722	Arms	10
S6 current at low speed	780	Arms	1 ₀ S6
Mechan	ical paramete	rs	
Rotor inertia	0.84	kg.m²	J
Motor mass	650	kg	М
Maximum speed with steel bearings	-	rpm	N _s
Maximum speed with hybrid bearings	-	rpm	N ₂
Maximum speed with X LIFE bearings	8000	rpm	Na
Maximum speed with Drive	6990	rpm	Nmax
Maximum mechanical speed	8000	rpm	Nmec
			
	cal parameter	8	
Number of poles	16		
Number of poles Winding resistance (25°C) *	16 0.00617	Ω	Rb
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm	16 0.00617 86.1	Ω Vrms / 1000 rpm	ke
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s)	16 0.00617 86.1 0.822	Ω Vrms / 1000 rpm Vrms / (rad/s)	ke ku
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant	16 0.00617 86.1 0.822 1.39	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms	ke ku Kt
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current	16 0.00617 86.1 0.822 1.39 764	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms	ke ku Kt Icc
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) *	16 0.00617 86.1 0.822 1.39 764 0.185	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH	ke ku Kt Icc Lg
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase *	16 0.00617 86.1 0.822 1.39 764 0.185	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH	ke ku Kt Icc Lq Ld
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current	16 0.00617 86.1 0.822 1.39 764 0.185 0.156	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree	ke ku Kt Icc Lq Ld Wo
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase *	16 0.00617 86.1 0.822 1.39 764 0.185	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH	ke ku Kt Icc Lq Ld
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	16 0.00617 86.1 0.822 1.39 764 0.185 0.156	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree	ke ku Kt Icc Lq Ld Wo
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	16 0.00617 86.1 0.822 1.39 764 0.185 0.156 10	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree	ke ku Kt Icc Lq Ld Wo
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	16 0.00617 86.1 0.822 1.39 764 0.185 0.156 10 11	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld Wo Wm
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Motor thermal resistance	16 0.00617 86.1 0.822 1.39 764 0.185 0.156 10 11	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld Wo Wm
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Motor thermal resistance Motor thermal time constant	16 0.00617 86.1 0.822 1.39 764 0.185 0.156 10 11	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld Wo Wm

All data are given in typical values under standard conditions

* Phase to phase ** Tolerances ± 7.5% and rotor at 25°C

*** $\,$ minimum value with rotor at 125°C

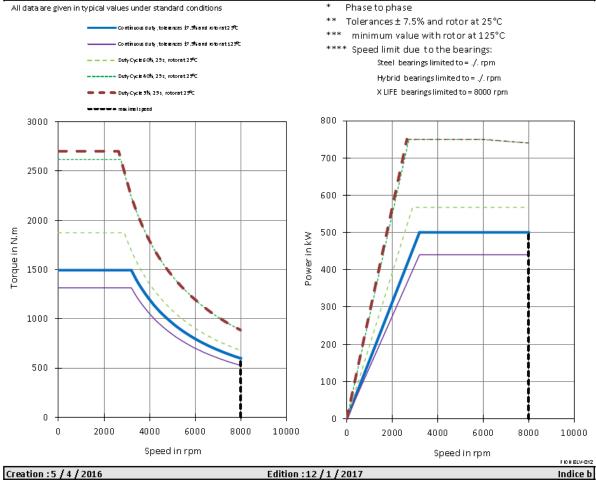
**** Speed limit due to the bearings:

FICH ELV-012

Creation:5/4/2016 Edition: 12/1/2017 MGVB40HAA Indice a

3.2.21. MGVB50HBS Detailed Intrinsic Data

High speed brushless motor


MGVB50HBS

ELECTRONIC DRIVE

DRIVE 1160/2460 - 400

/ Need protection module

S1 power **/***	500 / 405	kW	Ps1
S6 power **/***	750 / 607	kW	Ps6
Low speed torque ** / ***	1500/1210	N.m	M,
Low speed S6 torque **/***	2700 / 2190	N.m	M ₀ S6
Base speed (S1)	3200	rpm	Nb
Max speed ****	8000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	1010	Arms	10
S6 current at low speed	1900	Arms	1,56
Winding resistance(25°C) *	0.00417	Ω	Rb
Rotor inertia	1.04	kg.m²	J
Thermal time constant	5	min	Tth
Motor mass	740	kg	M
Min water cooling flow (Inlet 25°C MAX, 30% glycol)	50	l/min	W_f

MGVB50HBS

ELECTRONIC DRIVE

DRIVE 1160/2460 - 400

Main o	characteristics	y	
S1 power **/***	500/405	kW	Ps1
S6 power **/***	750/607	kW	Ps6
Low speed torque ** / ***	1500/1210	N.m	Ma
Low speed S6 torque **/***	2700/2190	N.m	M _o S6
Base speed (S1)	3200	rpm	Nb
Max speed ****	8000	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	1010	Arms	10
S6 current at low speed	1900	Arms	1,56
Mechan	ical paramete	77S	
Rotor inertia	1.04	kg.m²	J
Motor mass	740	kg	M
Maximum speed with steel bearings	-	rpm	N _t
Maximum speed with hybrid bearings	_	rpm	N ₂
Maximum speed with X LIFE bearings	8000	rpm	N ₃
Maximum speed with Drive	8000	rpm	Nmax
Maximum mechanical speed	8000	rpm	Nmec
Electri	cal parameter	8	
Number of poles	16		
Winding resistance (25°C) *	0.00417	Ω	Rb
Back EMF voltage phase to phase / 1000 rpm	97.2	Vrms / 1000 rpm	ke
Back EMF voltage phase to phase / (rad/s)	0.928	Vrms / (rad/s)	ku
Torque constant	1.49	N.m / Arms	Kt
Short circuit current	1290	Arms	lcc
Inductance Lq phase to phase (Back EMF voltage axis) *	0.125	mH	La
Inductance Ld phase to phase *	0.104	mH	Ld
Optimal phasing at permanent current	10	electrical degree	Ψο
Optimal phasing at S6 current	19	electrical degree	ψm
Therm	al parameters	y	
	0.00624	K/W	Rth
Motor thermal resistance			
	5	min	Tth
Motor thermal resistance Motor thermal time constant Winding thermal time constant	5 1.1	min min	Tth Tth w
Motor thermal time constant	_		

All data are given in typical values under standard conditions

* Phase to phase ** Tolerances ± 7.5% and rotor at 25°C

* Tolerances ± 7.5% and rotor at 25°C

FICH ELV-01Z

Creation : 5 / 4 / 2016 Edition : 12 / 1 / 2017 MGVB50HBS Indice b

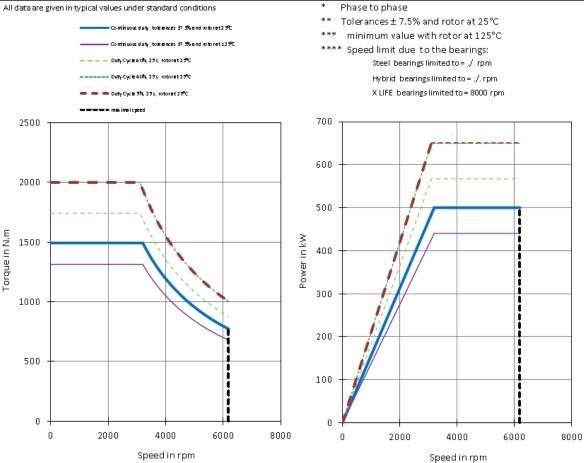
^{***} minimum value with rotor at 125°C
**** Speed limit due to the bearings:

Creation:5/4/2016

3.2.22. MGVB50HBS Detailed Data with AC890

High speed brushless motor

M GVB50HBS


ELECTRONIC DRIVE

3X890PXSA-43580M

Indice b

Edition: 12 / 1 / 2017

MGVB50HBS

ELECTRONIC DRIVE

3X890PXSA-43580M

Main o	characteristics	Y	
S1 power **/***	500 / 405	kW	Ps1
S6 power **/***	650/526	kW	Ps6
Low speed torque ** / ***	1500/1210	N.m	Mo
Low speed S6 torque **/***	2000/1620	N.m	M _o S6
Base speed (S1)	3200	rpm	Nb
Max speed ****	6180	rpm	Nmax
DC voltage supply when motor is loaded	540	Vdc	Û
Permanent current at low speed	1010	Arms	í o
S6 current at low speed	1340	Arms	1,56
Mechan	ical paramete	rs	
Rotor inertia	1.04	kg.m²	J
Motor mass	740	kg	M
Maximum speed with steel bearings	-	rpm	N,
Maximum speed with hybrid bearings	-	rpm	N ₂
Maximum speed with X LIFE bearings	8000	rpm	N₃
Maximum speed with Drive	6180	rpm	Nmax
Maximum mechanical speed	8000	rpm	Nmec
77	•		
	cal parameter:	5.	
Number of poles	16		
	-	ς Ω	Rb
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm	16		Rb ke
Number of poles Winding resistance (25°C) *	16 0.00417	Ω	
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm	16 0.00417 97.2	Ω Vrms / 1000 rpm	ke
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current	16 0.00417 97.2 0.928 1.49 1290	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms	ke ku Kt Icc
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) *	16 0.00417 97.2 0.928 1.49 1290	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH	ke ku Kt Icc Lg
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase *	16 0.00417 97.2 0.928 1.49 1290 0.125 0.104	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH	ke ku Kt Icc Lq Ld
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current	16 0.00417 97.2 0.928 1.49 1290 0.125 0.104 10	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree	ke ku Kt Icc Lq Ld U o
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) *	16 0.00417 97.2 0.928 1.49 1290 0.125 0.104	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH	ke ku Kt Icc Lq Ld
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	16 0.00417 97.2 0.928 1.49 1290 0.125 0.104 10	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld U o
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	16 0.00417 97.2 0.928 1.49 1290 0.125 0.104 10	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld U o
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current	16 0.00417 97.2 0.928 1.49 1290 0.125 0.104 10 13	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld Vo ψm
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Motor thermal resistance	16 0.00417 97.2 0.928 1.49 1290 0.125 0.104 10 13	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld Wo Wm
Number of poles Winding resistance (25°C) * Back EMF voltage phase to phase / 1000 rpm Back EMF voltage phase to phase / (rad/s) Torque constant Short circuit current Inductance Lq phase to phase (Back EMF voltage axis) * Inductance Ld phase to phase * Optimal phasing at permanent current Optimal phasing at S6 current Motor thermal resistance Motor thermal time constant	16 0.00417 97.2 0.928 1.49 1290 0.125 0.104 10 13	Ω Vrms / 1000 rpm Vrms / (rad/s) N.m / Arms Arms mH mH electrical degree electrical degree	ke ku Kt Icc Lq Ld Wo Wm

All data are given in typical values under standard conditions

*** minimum value with rotor at 125°C

* Phase to phase ** Tolerances ± 7.5% and rotor at 25°C

**** Speed limit due to the bearings:

FICH ELV-012 Indice b

Creation:5/4/2016 Edition:12/1/2017 MGVB50HBS

3.2.23. Time constants of the motor

3.2.23.1. Electric time constant:

$$\tau_{elec} = \frac{L_{ph_ph}}{R_{ph_ph}}$$

With following values given in the motor data sheet L_{ph_ph} inductance of the motor phase to phase [H], R_{ph_ph} resistance of the motor phase to phase at 25°C [Ohm].

Example:

Motor series MGV840CAP L_{ph_ph} = 15.4 mH or 15.4E-3 H R_{ph_ph} at 25°C = 0.823 Ohm → τ_{elec} = 15.4E-3/0.823 = **18.7 ms**

An overall summary of motor time constants is given a little further.

3.2.23.2. Mechanical time constant:

$$\tau_{mech} = \frac{R_{ph_{-}n} * J}{Kt * Ke_{ph_{-}n}} = \frac{0.5 * R_{ph_{-}ph} * J}{(3 * \frac{Ke_{ph_{-}ph}}{\sqrt{3}}) * \frac{Ke_{ph_{-}ph}}{\sqrt{3}}}$$

$$\tau_{mech} = \frac{0.5 * R_{ph_{-}ph}}{(Ke_{ph_{-}ph})^{2}}$$

With following values obtained from the motor data sheet:

R_{ph_ph} resistance of the motor phase to phase at 25°C [Ohm],

J inertia of the rotor [kgm²],

Keph_ph back emf phase coefficient phase to phase [V_{rms}/_{rad/s}].

The coefficient Ke_{ph_ph} in the formula above is given in $[V_{rms}/rad/s]$ To calculate this coefficient from the datasheet, use the following relation:

$$Ke_{ph_{-}ph_{[V_{rms}/rad/s]}} = \frac{Ke_{ph_{-}ph_{[V_{rms}/1000pm]}}}{\underbrace{\frac{2*\pi*1000}{60}}}$$

Example:

Motor series MGV840CAP

 R_{ph_ph} at 25°C = 0.823 Ohm

 $J = 0.0186 \text{ kgm}^2$

 $Ke_{ph_ph} [V_{rms}/1000rpm] = 113 [V_{rms}/1000rpm]$

 \rightarrow Keph_ph [V_{rms/rad/s}] = 113/(2* π *1000/60) = 1.079 [V_{rms/rad/s}]

 $\rightarrow \tau_{\text{mech}} = 0.5*0.823*0.0186/(1.079^2) = 6.5 \text{ ms}$

Remarks:

For a DC motor, the mechanical time constant σ_{mech} represents the duration needed to reach 63% of the final speed when applying a voltage step without any resistant torque, if the electrical time constant is much smaller than the mechanical time constant.

An overall summary of motor time constants is given a little further.

3.2.23.3. Thermal time constant of the copper:

$$\tau_{therm} = Rth_{copper_iron} * Cth_{copper}$$

$$Cth_{copper_{[J/^{\circ}K]}} = Mass_{copper_{[Kg]}} *389_{[J/kg^{\circ}K]}$$

With:

Rth_{copper_iron} thermal resistance between copper and iron [°K/W]

Cth_{copper} thermal capacity of the copper [J/°K] **Mass**_{copper} mass of the copper (winding) [kg]

Hereunder is given an overall summary of motor time constants:

Туре	Electric time constant [ms]	Mechanical time constant [ms]	Thermal time constant of copper [s]
MGV430BA	11,5	7,31	23
MGV635CA	10,2	5,95	34
MGV840CA	18,4	6,39	39
MGV860CB	18,3	3,63	35
MGV950CA	39,4	3,34	45
MGV966DA	22,1	1,37	37
MGVA50DA	30,8	5,62	55
MGVA50DB	33,1	3,51	61
MGVB40HA	30,0	3,83	66
MGVB50HB	30,0	2,52	64

3.2.24. Voltage withstand characteristics of MGV series

The motors fed by converters are subject to higher stresses than in case of sinusoidal power supply. The combination of fast switching inverters with cables will cause over voltage due to the transmission line effects. The peak voltage is determined by the voltage supply, the length of the cables and the voltage rise time. As an example, with a rise time of 200 ns and a 30 m (100 ft) cable, the voltage at the motor terminals is twice the inverter voltage.

The insulation system of the MGV motors is designed to withstand high repetitive pulse voltages and largely exceeds the recommendations of the IEC/TS 60034-25 ed 2.0 2007-03-12 for motors without filters up to 480V AC.

Higher supply voltages are available on request.

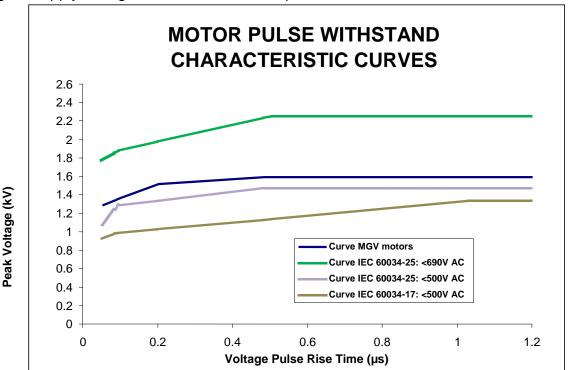
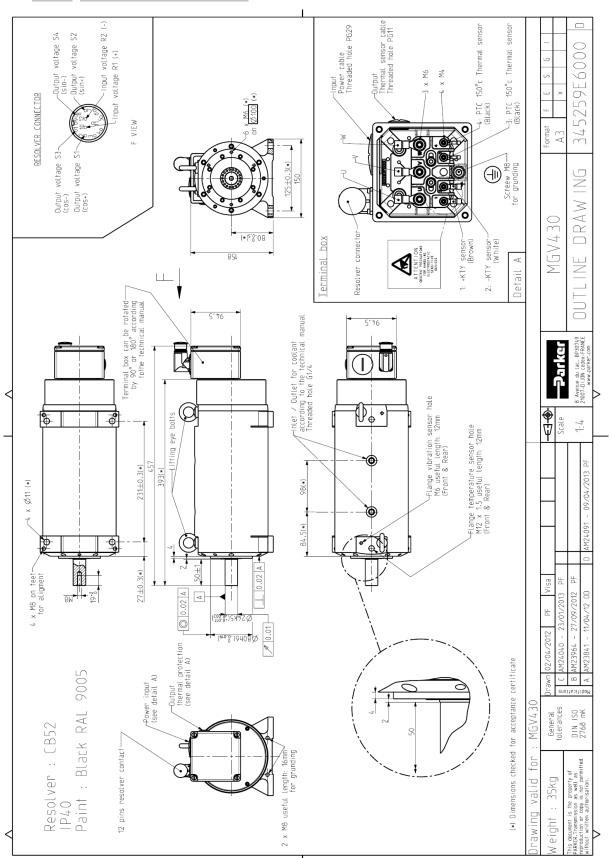
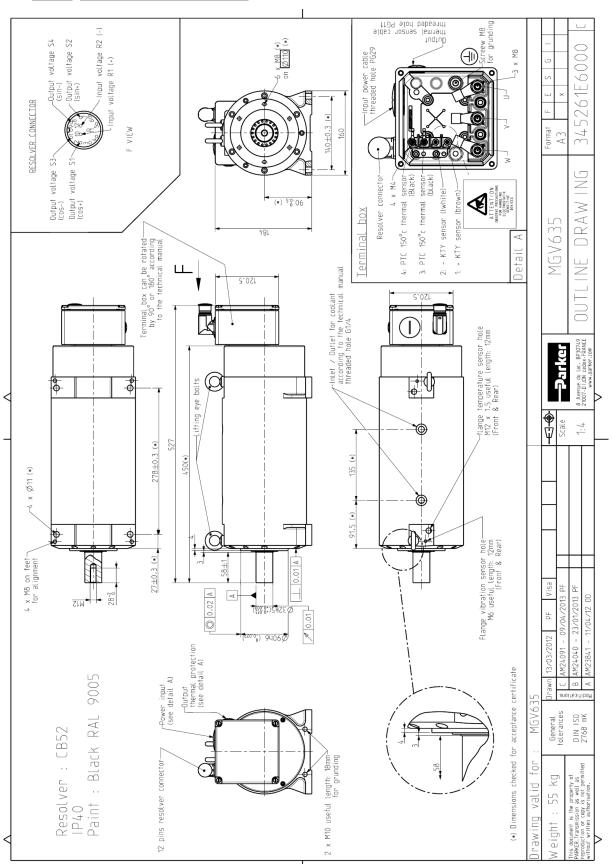


Figure 1: Minimum Voltage withstands characteristics for motors insulations according to IEC standards. At the top are the typical capabilities for the MGV motors with additional insulation.

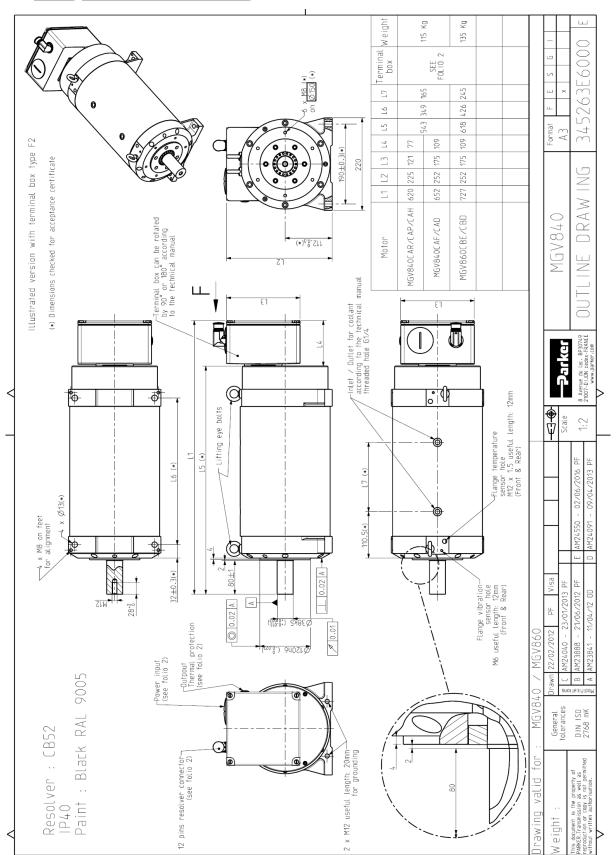
Note: The pulse rise times are defined in accordance with the IEC/TS 60034-17 ed4.0 2006-05-09.


The MGV motors can be used with a supply voltage up to 480 V under the following conditions:

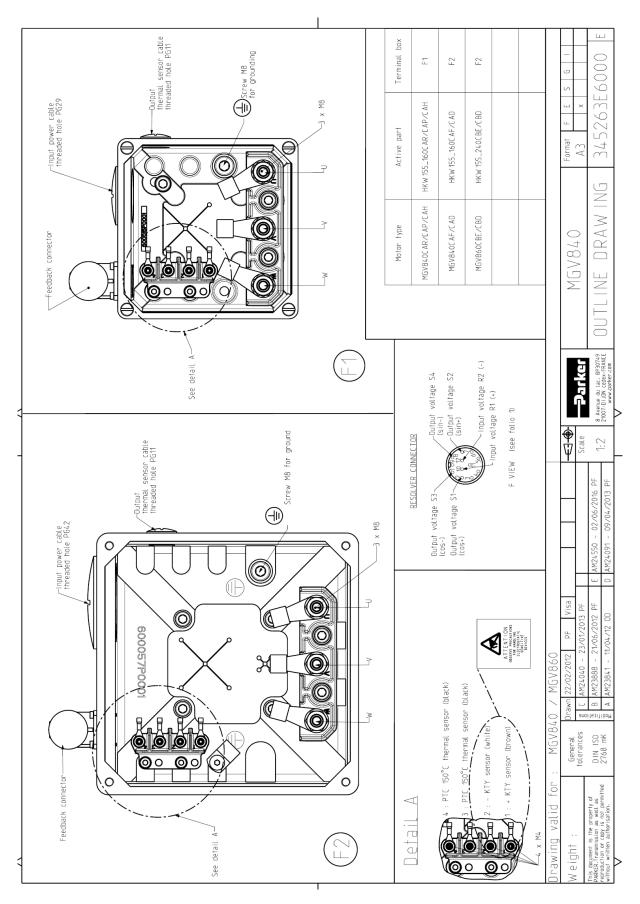
- The pulse rise times must be longer than 50 ns.
- The repetitive pulse voltages must not exceed the values given in figure 1, Curve IEC 60034-25: <500V AC.


3.3. Dimension drawings

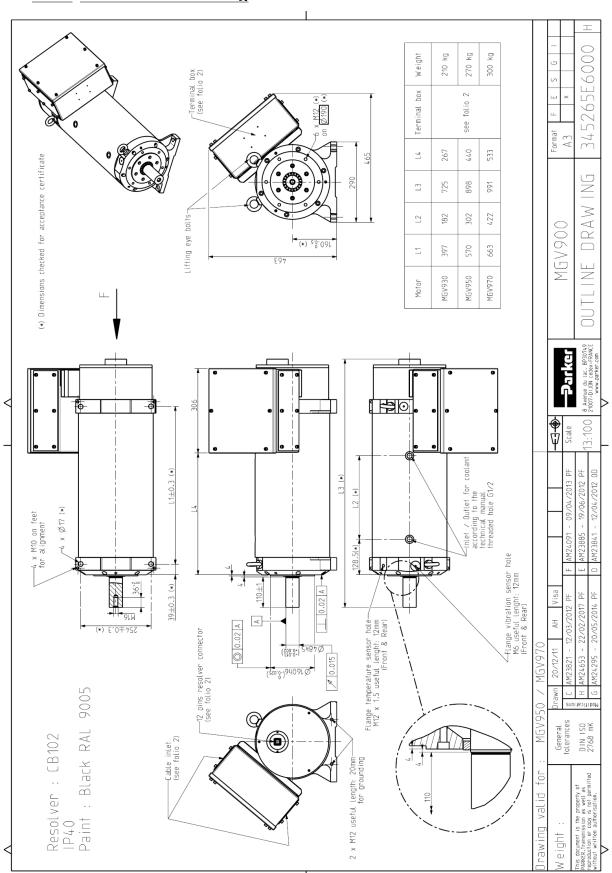
3.3.1. MGV4 outline drawing

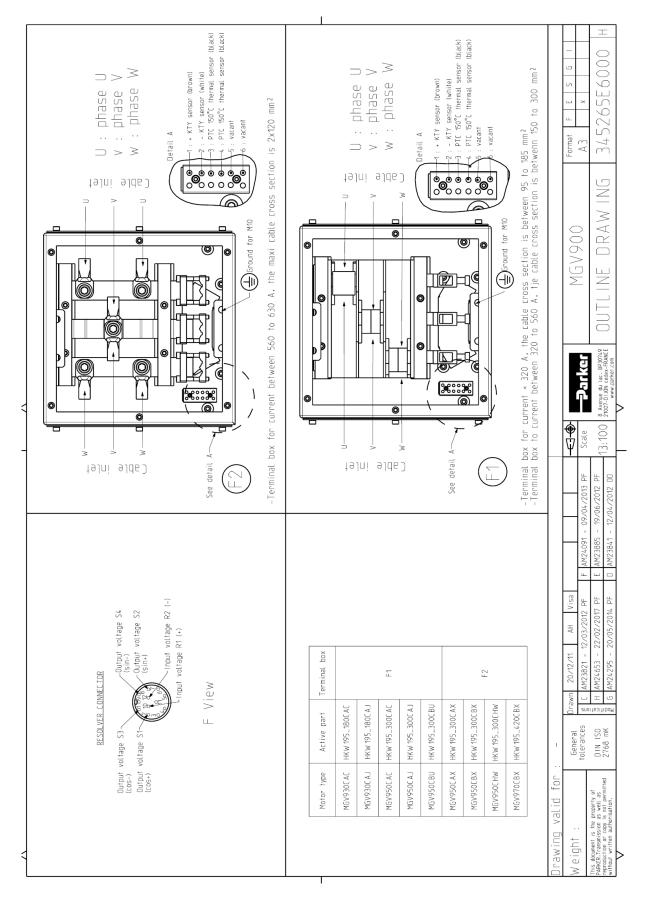


3.3.2. MGV6 outline drawing

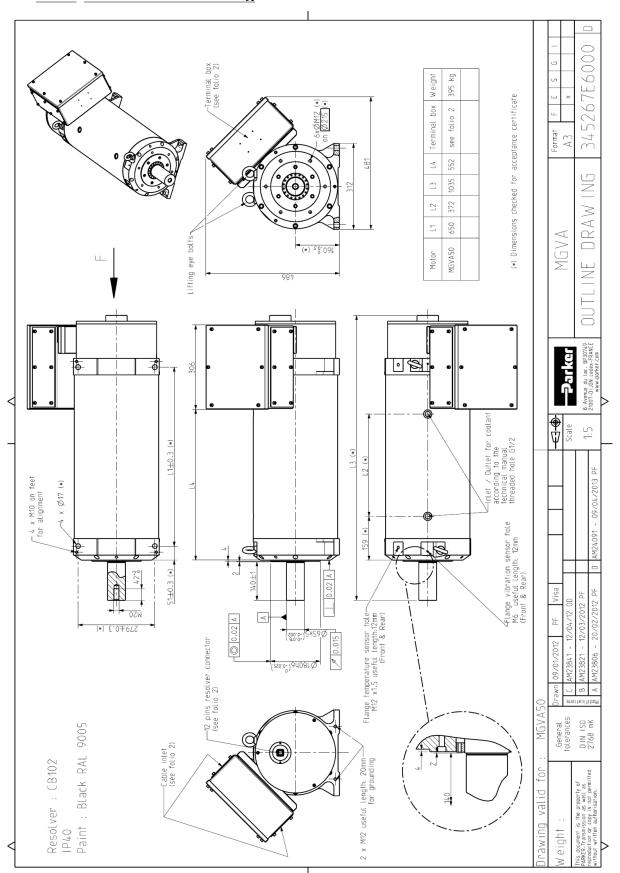


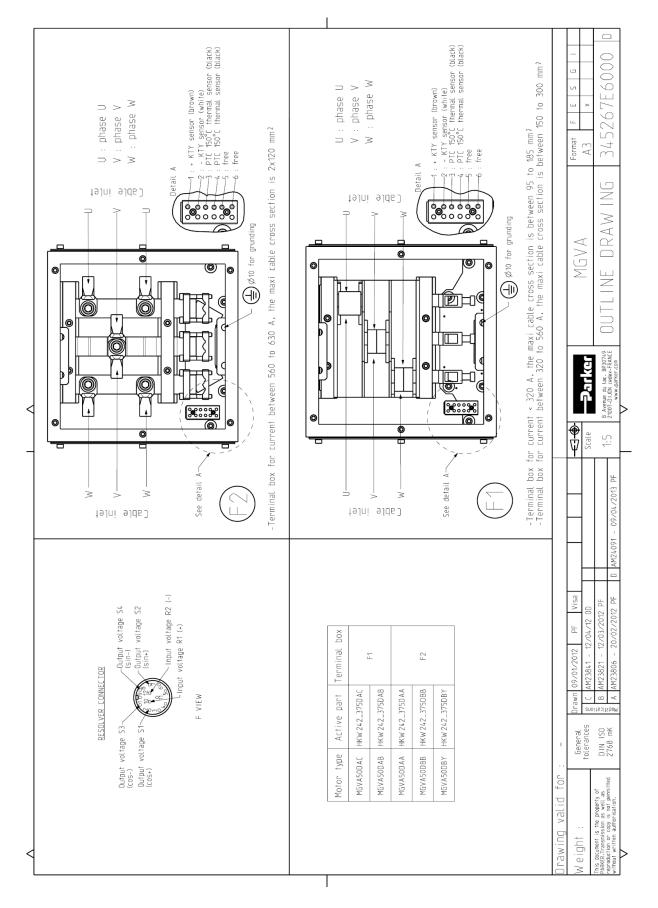
3.3.3. MGV8 outline drawing



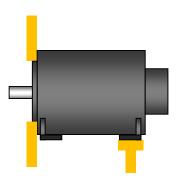


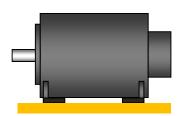
3.3.4. MGV9 outline drawing

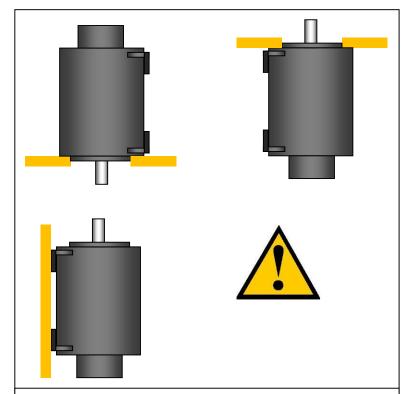




3.3.5. MGVA outline drawing




3.4. Motor mounting

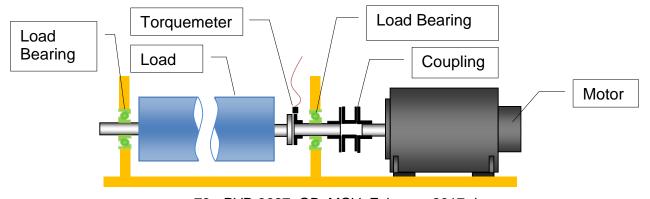

3.4.1. Motor mounting

By flange and feet

By feet

For vertical mounting, Please consult us.

The pre-load on the bearing has to be different to avoid vibration


3.4.2. Typical mounting.

Warning: The load must be supported by bearings.

No additional weight must be mounted on the shaft without extra bearings, even if this weight generates a force lower than the maximum force allowed on the shaft. Indeed, this weight can reduced the shaft resonance frequency and leads to its failure. (example: couplings or semi couplings alone on the motor shaft for test).

The torque meter has to be treated as a load and it has to be beared by bearings.

78 - PVD 3627_GB_MGV_February 2017.docx

3.4.3. Integration recommendation

<u>Warning</u>: The user has the entire responsibility to design and prepare the support, the coupling device, shaft line alignment, shaft line balancing and he has to calculate the resonance frequencies (torsion and bending) and to ensure they are compatible with maximum speed of the motor (with a margin of 20%)

Warning: A bad setting of the electronic control of the close loop (gain too high, incorrect filtring ...) can occur an instability of the shaft line, vibration, motor overheating or/and breakdown - Please consult us

Warning: It is mandatory to calculate the resonance frequencies (torsion and bending) of the complete shaft line (motor, coupling, load, torque meter...) AND to compare to the max speed to avoid any resonance and device breakdown:

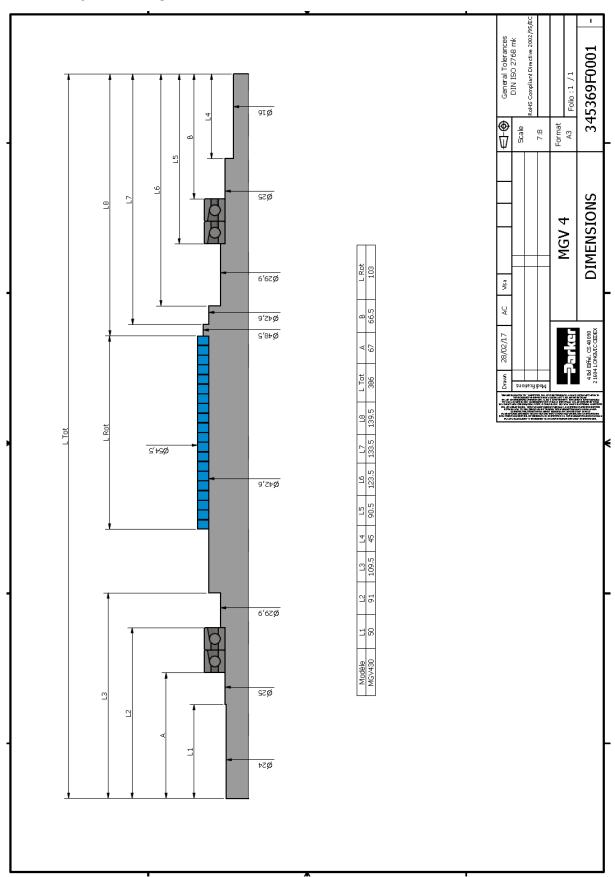
In torsion:

For an inertia ratio between motor and load <5:
 Natural frequency(Hz) > 1.2 x max speed (rpm) / 60
For an inertia ratio between motor and load >10:
 Natural frequency(Hz) > 1.7 x max speed (rpm) / 60
For an inertia ratio between motor and load >20:

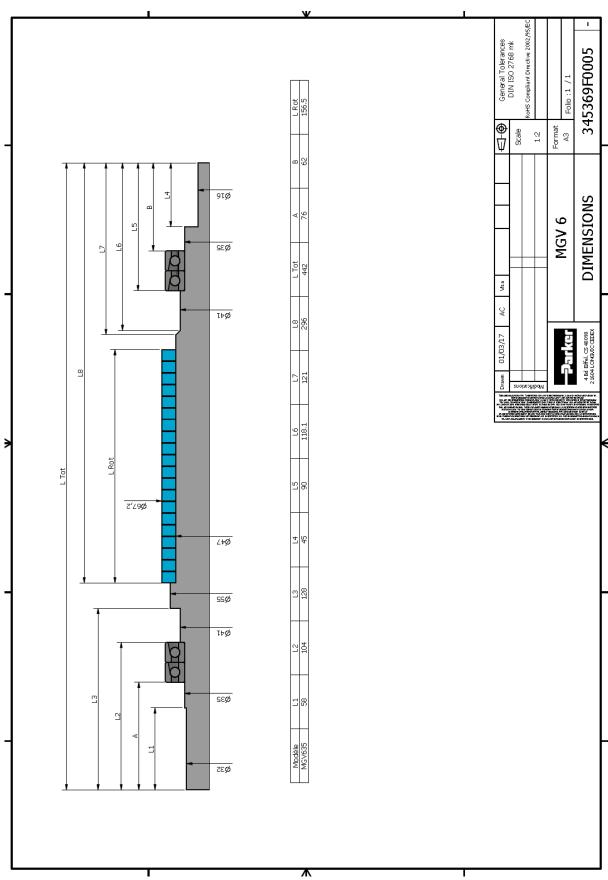
In case of no respect of these rules, the setting of the electronic control of the system has to be done carefully – Please consult us

In flexion:

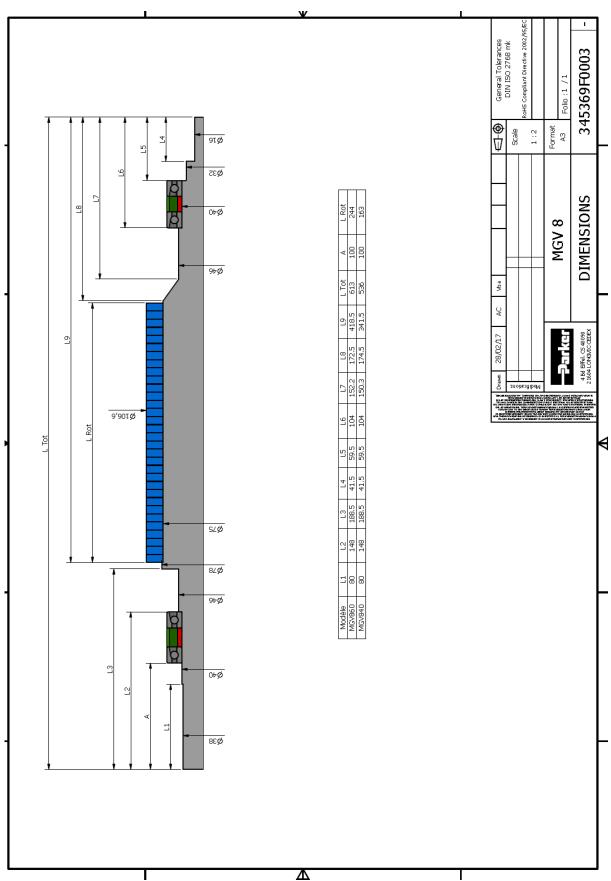
Please consult us


Natural frequency(Hz) > 1.2 x max speed (rpm) / 60

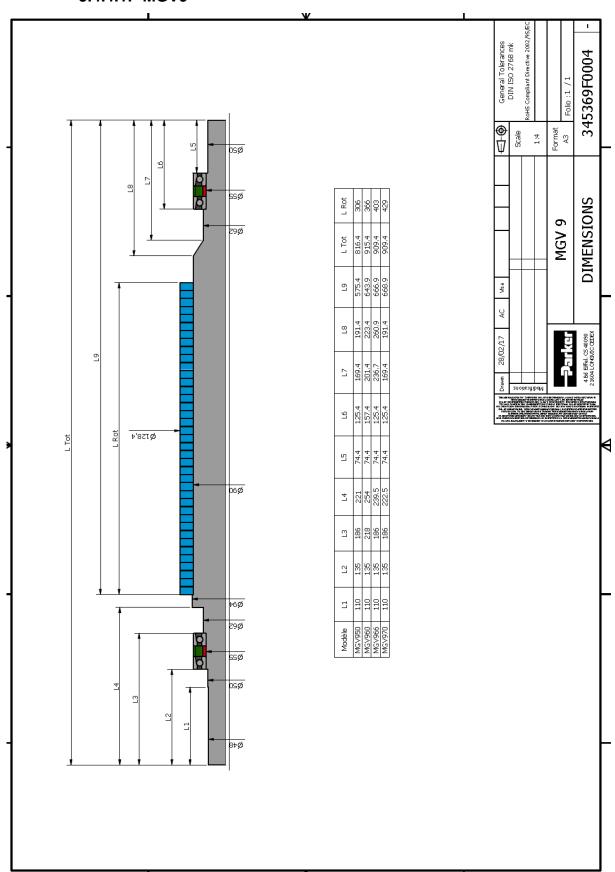
We highly recommend to do the commissioning with a Parker Engineer to set up correctly the Parker drive.


3.4.4. Shaft drawings for calculation of the natural frequencies

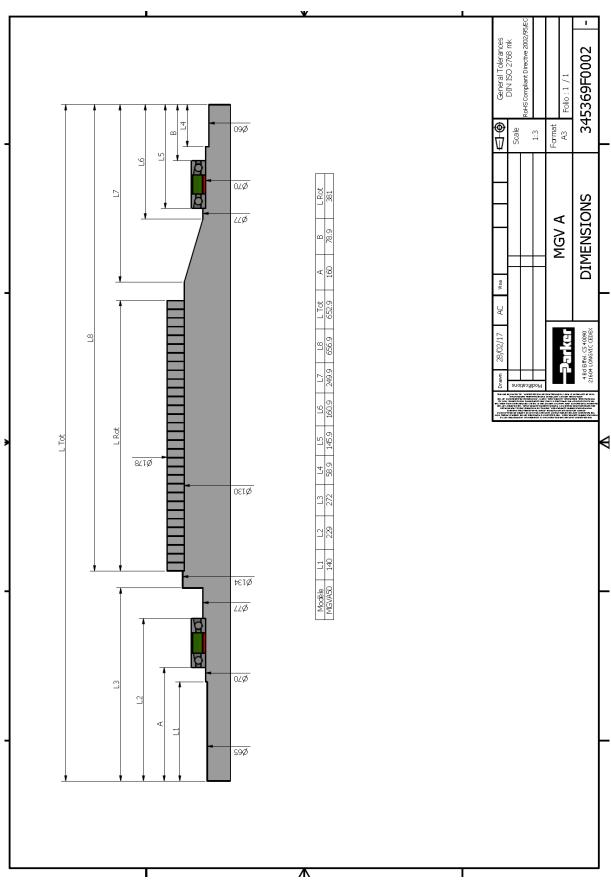
3.4.4.1. MGV4



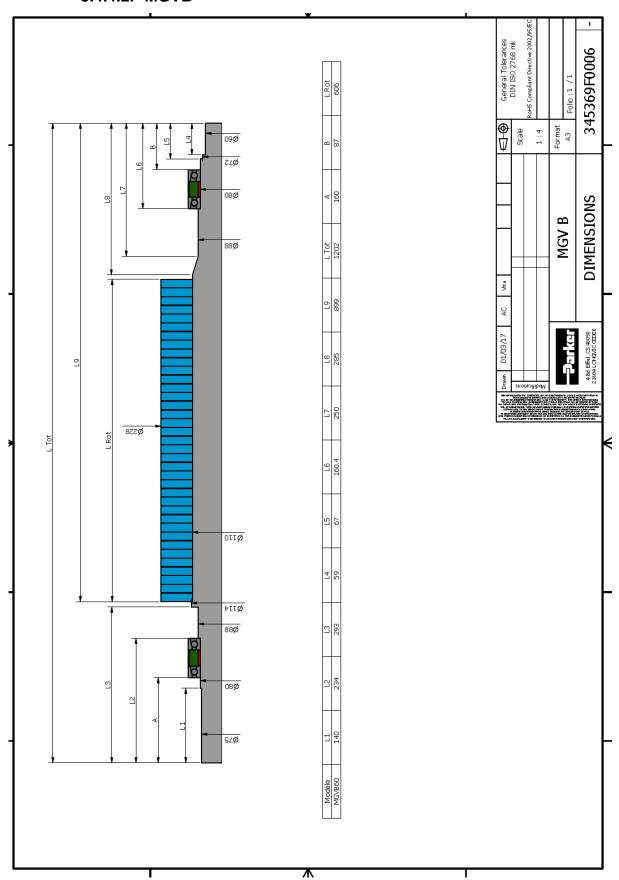
3.4.4.2. MGV6



3.4.4.1. MGV8



3.4.4.1. MGV9



3.4.4.1. MGVA

3.4.4.2. MGVB

3.4.5. Frame recommendation

Foundation must be even, sufficiently rigid and shall be dimensioned in order to avoid vibrations due to resonances. It is mandatory to calculate natural frequencies of the foundation.

The high-speed motors need a rigid support, machined and of good quality. The maximum flatness of the support has to be lower than 0.05mm.

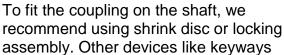
The motor vibration magnitudes in rms value are in accordance with IEC 60034-14 – grade A:

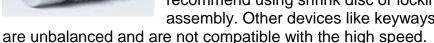
- maximum rms vibration velocity for MGV4/MGV6/MGV8 is 1.3mm/s for rigid mounting
- > maximum rms vibration velocity for MGV9/MGVA/MGVB is 1.8mm/s for rigid mounting

Warning: A grade A motor (according to IEC 60034-14) well-balanced, may exhibit large vibrations when installed in-situ arising from various causes, such as unsuitable foundations, reaction of the driven motor, current ripple from the power supply, etc.

Vibration may also be caused by driving elements with a natural oscillation frequency very close to the excitation due to the small residual unbalance of the rotating masses of the motor.

In such cases, checks should be carried out not only on the machine, but also on each element of the installation. (See ISO 10816-3).




3.4.6. Coupling

The permitted loads on the shaft are limited to low values low level (excepted with specific bearing), it is mandatory to use a flexible coupling between the motor and the load.

Different kind of couplings can be used like bellow coupling or disc coupling. They offer hard torsion stiffness.

To choose the coupling, all the components of the shaft line must be taken into account: motor, load, load's bearings, coupling, speed, acceleration, balancing, alignment....

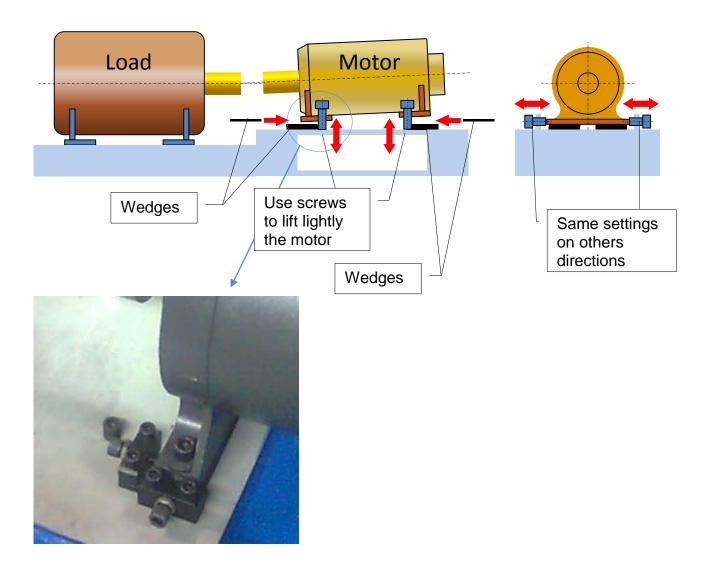
The coupling supplier can help to define the best coupling.

<u>Warning</u>: The coupling misalignment generates strains and loads on motor shaft depending on the stiffness of the coupling. Thermal expansion can also generate strain and load.

These forces (axial and radial) must be calculated and remain below the maximum shaft allowed forces (§3.5).

<u>Warning</u>: Parker will not be responsible for any motor shaft failure due to excessive strains or vibrations on the shaft.

<u>Warning</u>: The coupling between motor and bearing has to be the shortest as possible to have the bearing of the load close to the motor.

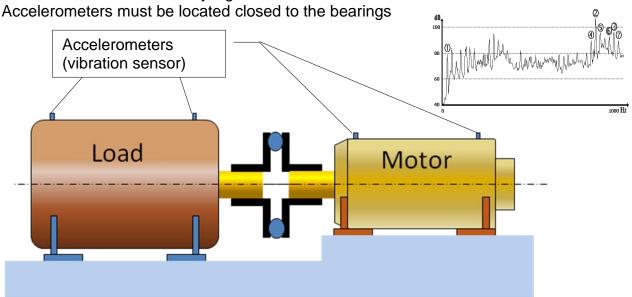


<u>Warning</u>: It is strictly forbidden to use couplings which generate axial force under load.

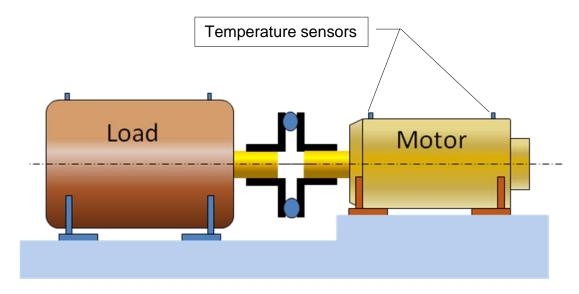
3.4.7. Motor alignment

To align easily the motor with the load, we recommend adding screws on the frame to push the motor smoothly. The MGV has a thread hole on each foot to lift it smoothly. Enough screws must be used to move the motor (or the load) in all directions. At each step of the setting, wedges have to be inserted between the motor feet and the frame. The allowable offset and angle of misalignment have to be the result of a calculation to guarantee a vibration level below the requirement of the standard ISO 10816-3.

3.4.8. Pulley/belt


<u>Warning</u>: The MGV motors are not designed to operate with pulley / belt systems.

By limiting the speed and/or using specific bearing assemblies, it can be possible in some cases to use pulley / belt systems. It is mandatory to raise a request to the factory before doing so.


3.4.9. Vibration and bearings temperature control

It is highly recommended to implement a vibratory control in accordance with the ISO 10816 standard to detect any sign of mechanical evolution before breakdown.

Moreover, it is highly recommended to monitor the bearings temperature. This control can detect temperature evolutions that are the first signs of the bearings end life. We recommend the process below:

- record initial bearing temperature after 1 hour of running.
- calculate the temperature rise = bearing temperature ambient temperature.
- if temperature rise increase by 15°C during the machine life, the motor must be stopped.

3.4.10. Vibration resistance to shaft end

Frequency domain :10 to 55 Hz according to EN 60068 -2-6 Vibration resistance to the shaft end :

- radial 0.9 g
- axial 0,3 g

3.5. Bearings

The bearings are greased for life.

The statistic bearings life is limited from 6000h up to 10000h depending on the way there are assembled and used, it is recommended to control the vibrations every 3000h or to change it once the predicted lifetime is reached.

This period is indicative and has to be considered with the load and speed limits taken into account for the bearings calculation.

Depending on the maximum speed, the loads and the needed lifetime, those highspeed motors can be equipped with different kind of bearings: steel ball bearings, hybrid ball bearings (ceramic balls with a synthetic cage) or Xlife bearings (ceramic balls with rings made with high performance iron).

Other limitations can come from the winding or the drive (cf: §3.1.4-Drive selection)

The bearing arrangement is made with 2 x 2 angular ball bearings (two on the shaft end + two on the rear). The front bearings are blocked in axial translation and the rear one is free in translation with a pre-load to avoid any stress from the shaft thermal expansion during the running.

The bearing arrangement is called big X:>> <<

3.5.1. Bearing max speed, part numbering, pre-load and load

		L : STEEL STRAIGHT BEARINGS	H : HYBRID BEARINGS	X : X-LIFE BEARINGS
	Max Speed [rpm]	26000	33000	45000
	Bearing	2 x 2 x HSS7005E	2 x 2 x HCS7005E	2 x 2 x XCS71905E
MGV4	Pre-load [N]	250	200	150
	Max radial Load [N]	100	100	100
	Max axial Load [N]	30	30	20
	Max Speed [rpm]	18500	25000	30000
	Bearing	2 x 2 x B7007E	2 x 2 x HCS7007E	2 x 2 x XCS7007E
MGV635	Pre-load [N]	400	300	300
	Max radial Load [N]	320	320	240
	Max axial Load [N]	80	80	60
	Max Speed [rpm]	14300	18000	24000
	Bearing	2 x 2 x B7008E	2 x 2 x HCS7008E	2 x 2 x XCS7008E
MGV8	Pre-load [N]	550	400	375
	Max radial Load [N]	400	400	400
	Max axial Load [N]	100	100	100

		L : STEEL STRAIGHT BEARINGS	H : HYBRID BEARINGS	X : X-LIFE BEARINGS
	Max Speed [rpm]	11700	16000	20000
	Bearing	2 x 2 x B7011E	2 x 2 x HCS7011E	2 x 2 x XCS7011E
MGV950	Pre-load [N]	2000	1500	1500
	Max radial Load [N]	500	700	500
	Max axial Load [N]	120	160	120
	Max Speed [rpm]	-	-	8000
	Bearing	-	-	4 x XCS7011E
MGV966	Pre-load [N]	-	-	2000
	Max radial Load [N]	-	-	300
	Max axial Load [N]	-	-	120
	Max Speed [rpm]	-	12000	-
	Bearing	-	2 x 2 x HCS7011E	-
MGV970	Pre-load [N]	-	1500	-
	Max radial Load [N]	-	500	-
	Max axial Load [N]	-	200	-
	Max Speed [rpm]	9200	12000	-
	Bearing	Consult us	2 x 2 x 70BER10HT	-
MGVA	Pre-load [N]	Consult us	2500	-
	Max radial Load [N]	700	700	-
	Max axial Load [N]	120	120	-
	Max Speed [rpm]	5400	8000	-
	Bearing	2 x 2 x 7016A5TR	Consult us	-
MGVB	Pre-load [N]	2600	Consult us	-
	Max radial Load [N]	1000	1000	-
	Max axial Load [N]	150	150	-

3.6. Cooling

In compliance with the IEC 60034-1 standards:

3.6.1. General recommendations

<u>Danger:</u> The cooling system has to be operational when the motor is running or energized.

<u>Danger:</u> The Inlet temperature and the water flow have to be monitored to avoid any damage.

<u>Caution:</u> When motor is not running, the cooling system has to be stopped 10 minutes after the motor shut down.

<u>Caution:</u> Condensation and risk of rust may occur when the temperature gradient between the air and the water becomes significant. Condensation is also linked to hygrometry rate.

To avoid any issue, we recommend: $T_{water} > T_{air} - 2^{\circ}C$.

The motor can be used with an ambient temperature between 27°C to 40°C with a high water temperature but with derating.

If inlet water temperature becomes higher than 25°C, derating factor must be applied according to §3.1.2 Temperature Derating

<u>Caution:</u> the ambient air temperature shall not exceed 40°C in the vicinity of the motor flange.

<u>Danger:</u> If the water flow stops, the motor can be damaged or destroyed causing accidents.

3.6.2. Additives for water as cooling media

Please refer to motor technical data for coolant flow rates.

The water inlet temperature must not exceed **25°C** to get the full performances.

The inner pressure of the cooling liquid must not exceed **5 bars**.

<u>Caution:</u> To avoid the corrosion of the motor cooling system (aluminum or steel), the water must have anti-corrosion additive.

The spindle servomotors are water cooled. Corrosion inhibitors must be added to the water to avoid the corrosion. The complete cooling system must be taken into account to choose the right additive, this includes: the different materials in the cooling circuit, the chiller manufacturer recommendations, the quality of the water...

The right additive solution is the responsibility of the user. Some additives like TYFOCOR or GLYSANTIN G48 correctly used have demonstrated their ability to prevent corrosion in a closed cooling circuit

For example: Glysantin G48 recommendations are:

- Water hardness: 0 to 20°dH (0 - 3.6 mmol/l)

Chloride content: max. 100ppmSulphate content: max. 100ppm

<u>Caution:</u> The water quality is very important and must comply with supplier recommendations. The additive quantity and periodic replacement must respect the same supplier recommendations.

<u>Caution:</u> The additive choice must take into account the global cooling system (chiller or water exchanger recommendations...).

Select carefully the materials of all the cooling system parts (chiller, exchanger, hoses, adapters and fittings) because the difference between material galvanic potential can generate corrosion.

3.6.3. Motor cooling circuit data and chiller selection

MGV servomotors are cooled by water. An anti-corrosion product must be mixed to the water. The main characteristics of cooling are given in the table bellow:

Chiller must be able to evacuate motor power loss (see table above). Chiller pump must provide water flow through motor and pipe pressure drop. Inlet temperature must be inferior to 25°C.

You can find various chillers solutions in Parker Hiross - http://www.dh-hiross.com/

Motor	Water flow necessary for cooling (with water + 30% glycol)	Maxi drop pressure @ nominal water flow in the motor	Motor power losses at max speed and continuous operation	Hyperchill Plus with single pump 5 bar : P5 option (mandatory)
	l/min	Bars	kW	
MGV420B	2,2		1,3	ICEP002-WASP5T0xxxxxx1
MGV430B	3,3		1,6	ICEP003-WASP5T0xxxxxx1
MGV620C	3,3		1,5	ICEP003-WASP5T0xxxxxx1
MGV635C	5,6		2,5	ICEP003-WASP5T0xxxxxx1
MGV820C	6		2,1	ICEP003-WASP5T0xxxxxx1
MGV840C	11		4,3	ICEP005-WATP5T0xxxxxx1
MGV860C	17		6,8	ICEP007-WATP5T0xxxxxx1
MGV920C	8		3.2	ICEP005-WATP5T0xxxxxx1
MGV930C	11		5.8	ICEP007-WATP5T0xxxxxx1
MGV950C	18	3 maxi	7	ICEP010-WATP5T0xxxxxx1
MGV960C	22	Jiliaxi	11	ICEP014-WATP5T0xxxxxx1
MGV966D	28		11,7	ICEP014-WATP5T0xxxxxx1
MGV970C	28		12	ICEP014-WATP5T0xxxxxx1
MGVA30D	17		7	ICEP010-WATP5T0xxxxxx1
MGVA50D	28		12	ICEP014-WATP5T0xxxxxx1
MGVB30H	30		10	ICEP014-WATP5T0xxxxxx1
MGVB40H	40		14	ICEP020-WATP5T0xxxxxx1
MGVB50H	50		20	ICEP024-WATP5T0xxxxxx1
MGVB60H	60		24	ICE039-A4003501P50FFxxxxx

3.6.4. Flow derating according to glycol concentration

	Glycol concentration [%]					
	0	10	20	30	40	50
	5	5.1	5.3	5.6	5.9	6.2
	10	10.2	10.6	11.1	11.8	12.4
	15	15.3	15.9	16.7	17.6	18.7
	20	20.4	21.2	22.2	23.5	24.9
	25	25.5	26.5	27.8	29.4	31.1
	30	30.6	31.8	33.4	35.3	37.3
	35	35.7	37.1	38.9	41.1	43.6
	40	40.8	42.4	44.5	47.0	49.8
	45	45.9	47.7	50.0	52.9	56.0
	50	51.0	53.0	55.6	58.8	62.2
	55	56.1	58.3	61.2	64.7	68.4
	60	61.2	63.5	66.7	70.5	74.7
宜	65	66.4	68.8	72.3	76.4	80.9
Flow rate [I/min]	70	71.5	74.1	77.8	82.3	87.1
je [75	76.6	79.4	83.4	88.2	93.3
rat	80	81.7	84.7	89.0	94.1	99.5
NO N	85	86.8	90.0	94.5	99.9	105.8
平	90	91.9	95.3	100.1	105.8	112.0
	95	97.0	100.6	105.6	111.7	118.2
	100	102.1	105.9	111.2	117.6	124.4
	110	112.3	116.5	122.3	129.3	136.9
	120	122.5	127.1	133.4	141.1	149.3
	130	132.7	137.7	144.6	152.8	161.8
	140	142.9	148.3	155.7	164.6	174.2
	150	153.1	158.9	166.8	176.3	186.6
	160	163.3	169.5	177.9	188.1	199.1
	170	173.5	180.1	189.0	199.9	211.5
	180	183.7	190.6	200.2	211.6	224.0
	190	194.0	201.2	211.3	223.4	236.4
	200	204.2	211.8	222.4	235.1	248.9

Use of the table above - Example

If the motor needs 25 I/min with 0% glycol,

If application needs 20% glycol, the water flow must be 26.5 I/min,

If application needs 40% glycol, the water flow must be 29.4 I/min.

Main formulas

$$Flow_rate = \frac{Power_dissipation*60}{\Delta\theta^{\circ}*C_{p}}$$

With: Flow rate [I/min]

Power_dissipation [W]

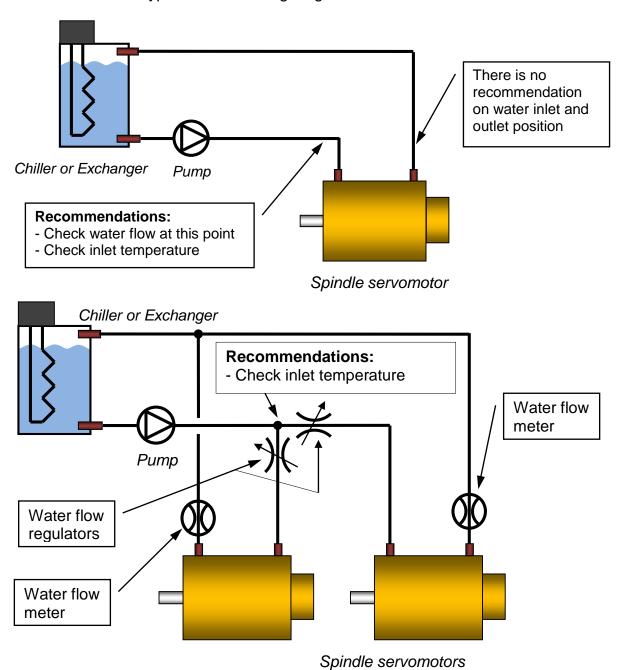
 $\Delta\theta^{\circ}$ Gradient inlet-outlet [°C]

Cp thermal specific capacity of the water as coolant [J/kg°K] (**Cp** depends on the % glycol concentration please see below)

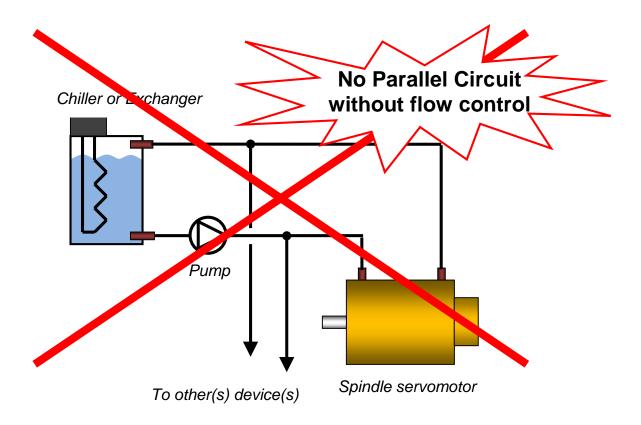
Thermal specific capacity *Cp* according to % glycol concentration and temperature

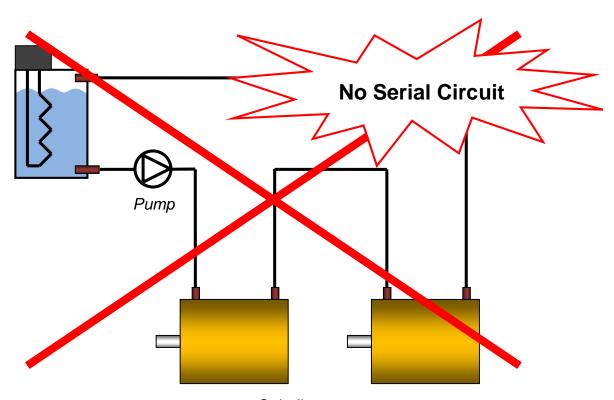
We have considered an average temperature of the coolant of 30°C.

Glycol concentration	Average temperature of the water as	Thermal specific capacity of the
[%]	coolant [°C]	water <i>Cp</i> [J/kg°K]
0	30	4176
30	30	3755
40	30	3551
50	30	3354



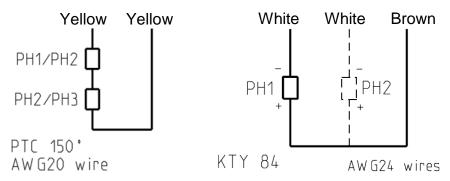
3.6.5. Water cooling diagram




<u>Recommendation:</u> The use of a filter allows reducing the presence of impurities or chips in the water circuit in order to prevent its obstruction. We recommend a 0.1mm filter.

This section shows typical water cooling diagram:

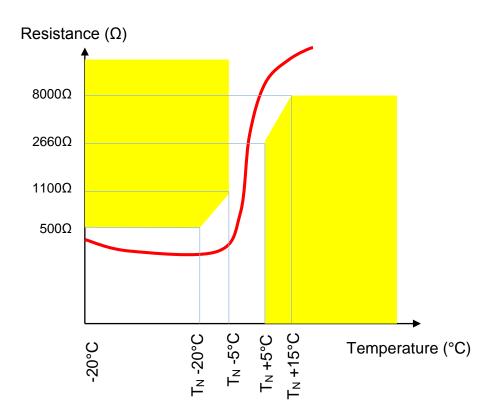
Spindle servomotors



3.7. Thermal Protection

Protection against thermal overloading of the motor is provided by two PTC thermistors and one KTY temperature sensor (and one more in case of KTY failure) built into the stator winding as standard. The thermal sensors, due to their thermal inertia, are unable to follow very fast winding temperature variations. They achieve their thermal steady state after a few minutes.

<u>Warning</u>: To protect correctly the motor against very fast overload, please refer to 3.1.7. Peak current limitations

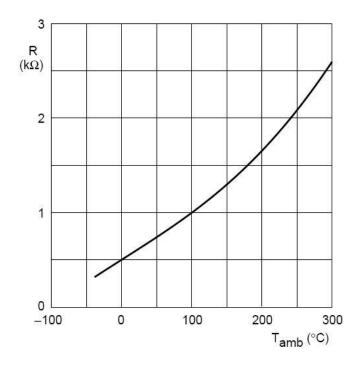


3.7.1. Alarm tripping with PTC thermistors :

The thermal probes (PTC thermistors) fitted in the servomotor winding trip the electronic system at $150^{\circ} \pm 5^{\circ}$ C. When the rated tripping temperature is reached, the PTC thermistor resistance changes very quickly. This resistance can be monitored by the drive to protect the motor.

The graph and tab below shows the PTC resistance as a function of temperature (T_N is nominal temperature)

Temperature	Resistance value
-20°C up to TN-20°C	R≤500Ω
TNF-5°C	R≤1100Ω
TNF+5°C	R≥2660Ω
TNF+15°C	R≥8000Ω



3.7.2. Temperature measurement with KTY sensors:

Motor temperature can also be continuously measured by the drive using a KTY 84-130 thermal sensor built in to the stator winding. KTY sensors are semiconductor sensors that change their resistance according to an approximately linear characteristic. The required temperature limits for alarm and tripping can be set in the drive.

The graph below shows the KTY sensor resistance vs temperature, for a current of 2 mA:

<u>Warning</u>: KTY sensor is sensitive to electrostatic discharge. So, always wear an antistatic wrist strap during KTY handling.

Warning: KTY sensor is polarized. Do not invert the wires.

<u>Warning</u>: KTY sensor is sensitive. Do not check it with an Ohmmeter or any measuring or testing device.

3.8. Power electrical connection

3.8.1. Wires sizes

In every country, you must respect all the local electrical installation regulations and standards.

Not limiting example in France: NFC 15-100 or IEC 60364 as well in Europe.

Cable selection depends on the cable construction, so refer to the cable technical documentation to choose wire sizes

Some drives have cable limitations or recommendations; please refer to the drive technical documentation for any further information.

Cable selection

At standstill, the current must be limited at 80% of the low speed current I_o and the cable has to support the peak current for a long period. So, if the motor works at standstill, the current to select the right wire size is $\sqrt{2} \times 0.8 I_o \cong 1,13 \times I_o$.

Sizes for H07 RN-F cable, for a 3 cores in a cable tray at 30°C max

Section	Imax
[mm²]	[A _{rms}]
1.5	17
2.5	23
4	31
6	42
10	55
16	74
25	97
35	120
50	146
70	185
95	224
120	260
150	299
185	341
240	401
300	461

Example of sizes for H07 RN-F cable :

Conditions of use:

Case of 3 conductors type H07 RN-F: 60°C maximum

Ambient temperature: 30°C

Cable runs on dedicated cables ways

Current limited to 80%*I₀ at low speed or at motor stall.

Example:

lo=100 Arms

Permanent current at standstill: 80 Arms

Max permanent current in the cable = 113 Arms

Cable section selection = 35mm² for a 3 cores in a cable tray at 30°C max.

You also have to respect the Drive commissioning manual and the cables current densities or voltage specifications

3.8.2. Conversion Awg/kcmil/mm²:

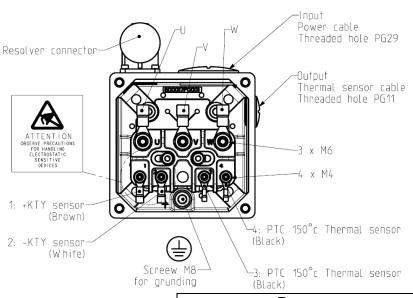
Awg	kcmil	mm²
	500	253
	400	203
	350	177
	300	203 177 152
	250	127 107
0000 (4/0)	212	107
000 (3/0)	168	85
00 (2/0)	133	67.4
0 (1/0)	106	53.5
1	83.7	42.4
1 2 3 4	66.4	33.6
3	52.6	26.7
	41.7	21.2
5 6	33.1	16.8
6	26.3	13.3 10.5
7	20.8	10.5
8	16.5	8.37
9	13.1	6.63
10	10.4	5.26
11	8.23	4.17
12	6.53	3.31
14	4.10	2.08
16	2.58	1.31
18	1.62	0.82
20	1.03	0.52
22 24	0.63	0.32
24	0.39	0.20
26	0.26	0.13

3.8.3. Motor cable length

For motors which present low inductance values or low resistance values, the own cable inductance, respectively own resistance, in case of large cable length can greatly reduce the maximum speed of the motor. Please contact Parker for further information.

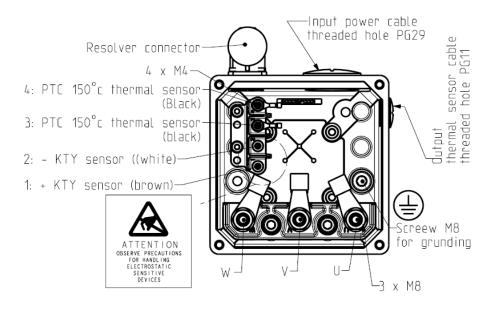
<u>Caution:</u> It might be necessary to fit a filter at the servo-drive output if the length of the cable exceeds 25 m. Consult us.

3.8.4. Mains supply connection diagrams

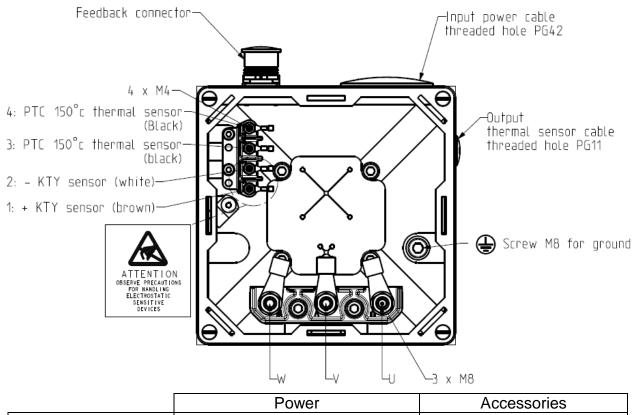

<u>Caution:</u> A bad tightening on the cable or a too small cable section can generate an overheating and burn the terminals box

3.8.4.1. Ground connection

<u>DANGER:</u> For the safety, you need to connect motor to the ground. Consult the local regulations to choose the right cross section and to know the resistance limits to check ground continuity between frame and ground wire.


3.8.4.2. MGV4 – terminal box 95x95

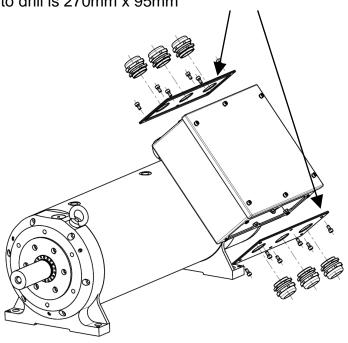
	Power	Accessories
Tightening torque	8.5 N.m	2.5 N.m



3.8.4.3. MGV6 and MGV8 – terminal box 120x120

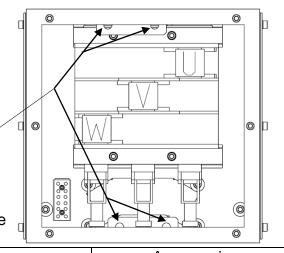
	Power	Accessories
Tightening torque	20 N.m	2.5 N.m

3.8.4.4. MGV8 – terminal box 175x175



	Power	Accessories
Tightening torque	20 N.m	2.5 N.m

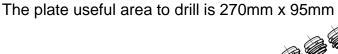
3.8.4.5. MGV9, MGVA and MGVB with current < 320A – cable cross section: 95 to 185mm² max and 320 < current < 560A – cable cross section: 150 to 300mm²

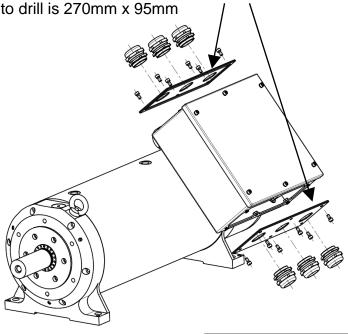

The side plates can be removed and drilled to install the cables glands (not provided). The plate useful area to drill is 270mm x 95mm

U, V, W: Clamp Power Connection

- 1: KTY Sensor + (Brown)
- 2: KTY Sensor (White)
- 3: PTC 150°C Thermal Probe (Black)
- 4: PTC 150°C Thermal Probe (Black)
- 5: PTC 140°C Thermal Probe (White)
- 6: PTC 140°C Thermal Probe (Blue)

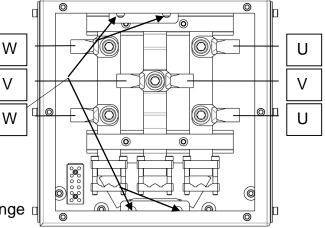
GND: 4 holes Ø10.5mm in terminal box And 2 thread holes M12 on rear flange




	Power	Accessories
Tightening torque	30 N.m	0,6 – 0,8 N.m
Cables section	95 to 185 mm ² (320 A)	0,2 to 4 mm ²
capacity	150 to 300 mm ² (450 and 560 A)	0,2 10 4 11111-

3.8.4.6. MGV9, MGVA and MGVB with 560 < current < 630A - cable cross section: 2x120mm² max

The side plates can be removed and drilled to install the cables glands (not provided).



U, V, W: Ø12.5 for Power Connection

- 1: KTY Sensor + (Brown)
- 2: KTY Sensor (White)
- 3: PTC 150°C Thermal Probe (Black)
- 4: PTC 150°C Thermal Probe (Black)
- 5: PTC 140°C Thermal Probe (White)
- 6: PTC 140°C Thermal Probe (Blue)

GND: 4 holes Ø10.5mm on terminal box

And 2 thread holes M12 on rear flange

	Power	Accessories	
Tightening torque	30 N.m	0,6 – 0,8 N.m	
Cables section	2 x 120mm² ring terminal per	0,2 to 4 mm ²	
capacity	phase	,	

This terminal box is limited to a 120mm² cross section.

For higher current than 630 Arms or higher cable cross section, please consult us.

3.9. Feedback system

3.9.1. Resolver

A resolver determines the rotor position.

Its signals are processed by the drive in order to control the stator currents, the speed and the position.

Two resolver types can be associated with the MGV: CB52 or CB102 with a connector seat.

	CB52	CB102
Motor associated	MGV4/MGV6/MGV8	MGV9/MGVA/MGVB
Maximum speed	50 000 rpm	20 000 rpm
Number of pole	2 poles	2 poles
Feeding voltage at 8 KHz	7 Vrms	7 Vrms
Feeding current at 8 KHz	70mA maximum	70mA maximum
Precision under 7Vrms at 8KHz	+/-6'	+/-10'
Transformation ratio at 8 KHz	0.425 mini, 0.55 maxi	0.425 mini, 0.55 maxi
Input DC resistance, supply	Mini 24 Ω	Mini : 15.1 Ω
transformer (R1-R2)	Maxi 26 Ω	Maxi : 16.2 Ω
DC stator resistance output sin	Mini 34.5 Ω	Mini 57.4 Ω
(S2-S4) output cos (S1-S3)	Maxi 37.5 Ω	Maxi 63Ω
Insulation resistance	≥ 50MΩ	≥ 50MΩ
Assembly	Direct on shaft end	Direct on shaft end
Operating temperature	-55 – +155 °C	-55 – +155 °C

Resolver connector	PIN	Signal
	1	Output voltage S3 (cos-)
	2	Output voltage S1 (cos+)
	3	
	4	
2 10 128	5	
[5 6 6 8]	6	
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	7	Output voltage S2 (sin+)
40 11 50 69	8	Output voltage S4 (sin-)
	9	
	10	Input voltage R1
	11	
	12	Input voltage R2

3.9.2. Cables and connectors associated to the resolver

Cable reference for DIGIVEX drive: CD1UA1F1R0xxx depending on length Cable reference for AC 890 drive: CS4UA1F1R0xxx depending on length. The "xxx" in the part number must be replaced by the length in meter. Ex: for 20m cable, "xxx" = 020.

Resolver connector reference for seat, pins to be soldered: 220065R4621

Cable reference: 6537P0047

3.9.3. Resolver setting

During the setting procedure, it is strictly necessary to respect the 3 following conditions:

- The rotor must be able to rotate freely. The maximum friction torque on the rotor must not exceed 1% of the motor permanent torque.
- The cooling circuit has to be in use.
- The operator must be able to reach the resolver stator and to manually turn it and lock it (access to the locking screws).

Look at the drive instruction manual for the setting procedure details.

3.9.4. Sin-Cos Encoder (on request)

1V~, 250Khz max

Restriction: As the encoder is not absolute on one turn, the setting is lost at each power OFF. You must either set the encoder at each power ON or keep alive the low power supplies. The advantage of the sin-cos encoder is the excellent accuracy that allows very good power, speed and position control.

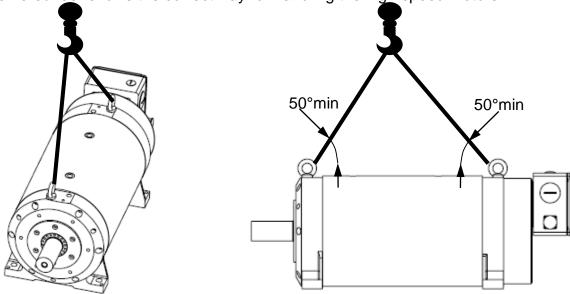
4. COMMISSIONING, USE AND MAINTENANCE

4.1. Reception, handling, storage

4.1.1. Equipment delivery

All the high-speed motors are strictly controlled during manufacturing, before shipping. While receiving it, it is necessary to verify motor condition and if it has not been damaged in transit. Remove it carefully from its packaging. Verify that the data written on the label are the same as the ones on the acknowledgement of order, and that all documents or needed accessories for user are present in the packaging.

<u>Warning</u>: In case of damaged material during the transport, the recipient must <u>immediately</u> make reservations to the carrier through a registered mail within 24 h.


4.1.2. Handling

The high-speed motors are equipped with 2 lifting rings for handling.

<u>DANGER</u>: Only use the lifting rings the high-speed motors are equipped with for handling operations. Never use cables, connectors, input/output of cooling circuit, or any other inappropriate lifting device.

The picture hereunder shows the correct way for handling the high-speed motors.

<u>DANGER:</u> Choose the correct slings for the motor weight. The two slings must the same length and a minimum angle of 50° has to be respected between the motor axis and the slings.

4.1.3. Storage

Before being mounted, the motor has to be stored in a dry place, without rapid or important temperature variations in order to avoid condensation.

During storage, the ambient temperature must be kept between -20 and +60°C.

If the high-speed motor has to be stored for a long time, verify that the shaft end, feet and the flange are coated with corrosion proof product.

After a long storage duration (more than 3 month), run the motor at low speed in both directions, in order to blend the bearing grease spreading.

The motor is delivered with caps for the water inlet and outlet to protect the cooling circuit. Keep them on place until the motor commissioning.

4.2. Installation

4.2.1. Mounting

Foundation must be even, sufficiently rigid and shall be dimensioned in order to avoid vibrations due to resonance. Before bolting the motor's feet, the foundation surface must be cleaned and checked in order to detect any excessive height difference between the foot locations. The variation from one foot to any other shall not exceed 0,05 mm. In any case we recommend using shims to compensate small irregularities.

<u>Caution:</u> The user bears the entire responsibility for the preparation of the foundation.

The table below gives the average tightening torques required regarding the fixing screw diameter. These values are valid for both motor's feet and flange bolting.

Screw diameter	Tightening torque
M2 x 0.35	0.35 N.m
M2.5 x 0.4	0.6 N.m
M3 x 0.5	1.1 N.m
M3.5 x 0.6	1.7 N.m
M4 x 0.7	2.5 N.m
M5 x 0.8	5 N.m
M6 x1	8.5 N.m
M7 x 1	14 N.m
M8 x 1.25	20 N.m

Screw diameter	Tightening torque
M9 x 1.25	31 N.m
M10 x 1.5	40 N.m
M11 x 1.5	56 N.m
M12 x 1.75	70 N.m
M14 x 2	111 N.m
M16 x 2	167 N.m
M18 x 2.5	228 N.m
M20 x 2.5	329 N.m
M22 x 2.5	437 N.m
M24 x 3	564 N.m

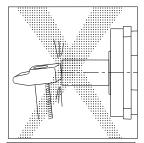
Warning: After 15 days, check all tightening torques on all screws and nuts.

4.2.2. Preparation

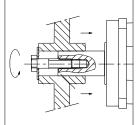
Once the motor is installed, it must be possible to access to the wiring, and read the manufacturer's plate. Air must be able to circulate freely around the motor for cooling purposes.

Clean the shaft using a cloth soaked in white spirit or alcohol. Pay attention that the cleaning solution does not get on to the bearings.

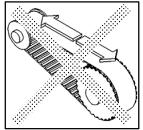
The motor must be in a horizontal position during cleaning or running.



Caution: Do not step on the motor, the connector or the terminal box


Caution: Always bear in mind that some parts of the surface of the motor can reach or exceed 100°C

4.2.3. Mechanical assembly



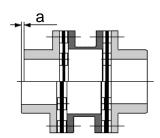
The operation life of servomotor bearings depends largely on the care and attention given to this operation.

• Prohibit any impact on the shaft and avoid press fittings which could mark the bearing tracks. If press fitting cannot be avoided, it is advisable to immobilize the shaft in motion; this solution is nevertheless dangerous as it puts the resolver at risk.

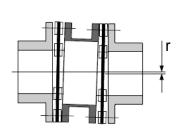
- Use the thread at the end of the shaft in accordance with the diagram for fitting accessories. It is possible to put pressure on the shoulder of the shaft located in front of the bearing.
- Carefully check the alignment of the motor shaft with the driven machine to avoid vibrations, irregular rotations or applying too much strain on the shaft.

 The MGV can't hold a pulley due to the exceeded radial load from the belt on the high speed bearings.

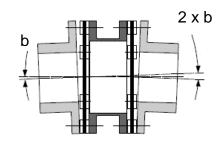
<u>Warning</u>: The user has the entire responsibility to prepare the support, the coupling device, shaft line alignment, and shaft line balancing.



4.2.4. Alignment


In order to control the loads applied on the motor shaft, the shafts must be aligned very carefully, even if a flexible coupling system is used.

The operation has to set:


- Axial alignment a

Radial alignment r

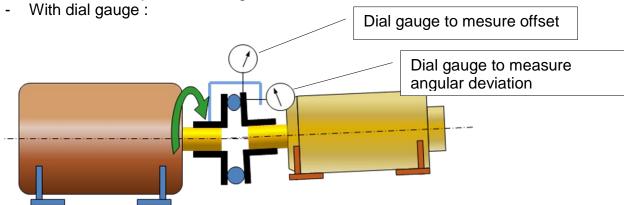
Angular alignment b

As the total misalignment is a combination of the three misalignments (axial, radial, angular), do not exceed, for each setting, 20% of the maximum value given by the coupling device manufacturer.

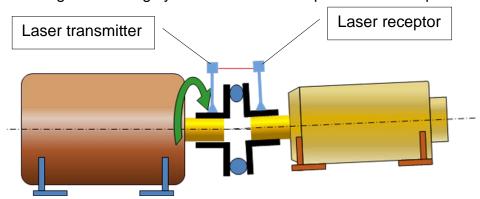
The efforts on the shaft due to misalignments, taking into account the coupling stiffness, must not exceed the specified values given for the motor (see §3.5 "Bearings").

<u>Warning</u>: Coupling misalignment generates strain and load on motor shaft depending on the rigidity of the coupling.

Variations in temperature generate strain and load due to the expansion. These forces (axial and radial) must not exceed the specified loads (§3.5). Coupling misalignment generates also vibrations.


<u>Danger</u>: Coupling misalignment generates vibrations that can lead to a shaft failure.

<u>Warning</u>: Parker will not be responsible for any motor shaft fatigue due to excessive strain or vibrations on the shaft, a bad alignment or bad shaft line balancing.



Different solutions are possible to align motor with load:

- With laser

A laser alignment is highly recommended for speeds > 10000rpm

Warning: The load must be supported by bearings.

Any weight on the shaft (even below maxi bearing force capacity) cannot be supported by motor bearings: balancing default generates centrifugal force and vibration as a result is breakdown shaft.

For the fixed through feet motors, after alignment operation, the wobbly foot has to be steadied before tightening.

4.2.5. Motor startup

The delivered motor has been controlled and burned in. Nevertheless, it is recommended to start it gradually by 1000-rpm steps with a speed ramp, during 1 minute for each step until the maximum speed. Monitor the bearing temperature. It must be stabilized. Typical temperatures are 60-70°C.

<u>Warning</u>: Strong speed step without speed ramp can damage bearings or can excite natural frequency.

<u>Warning</u>: We highly recommend to do the commissioning with a Parker Engineer to set up correctly the Parker drive.

4.2.6. Shaft line balancing and vibration control

Once the motor is fixed on its frame and linked with the driven load, it is highly recommended to check complete shaft line balancing to minimize vibrations.

Moreover, it is highly recommended to implement a vibratory control in accordance with the ISO 10816 standard: the efficient speed vibration on the frequency range between 10 to 1000Hz must not run over 2.8 mm/s for an endless supply.

The motor has to be tested on the whole speed range in order to detect a potential natural frequency with the frame.

Rotation speed for which a resonance appears have to be avoided or the resonance has to be suppressed.

4.3. Electrical connection

<u>Warning</u>: Check that the power to the electrical cabinet is safely off prior to make any connections.

<u>Warning</u>: The wiring must comply with the drive commissioning manual, with recommended cables, the standard and the local regulations

<u>Warning</u>: The high-speed motor must be grounded by connecting to an unpainted section of the motor.

<u>Danger:</u> After 15 days, check all tightening torques on cable connection. Bad connections can lead to overheating and fire.

4.3.1. Cable connection

Please, read §3.7 "Electrical connection" to have information about cable and terminal box.

Many useful informations are already available in the drive documentations.

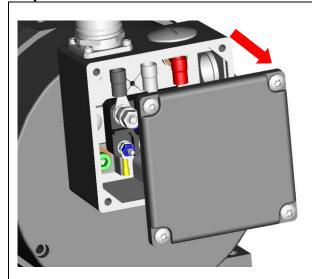
4.3.2. Encoder cable handling

<u>Danger:</u> before any intervention the drive must be stopped in accordance with the procedure.

<u>Caution:</u> It is forbidden to disconnect the Encoder cable under voltage (high risk of damage and sensor destruction).

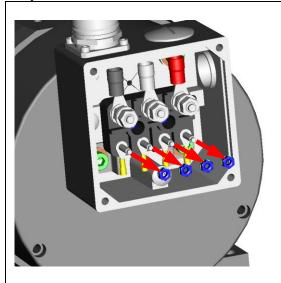
Warning: Always wear an antistatic wrist strap during encoder handling.

<u>Warning:</u> Do not touch encoder contacts (risk of damage due to electrostatic discharges ESD.



4.3.3. Terminal box rotation (only for MGV4, 6 and 8)

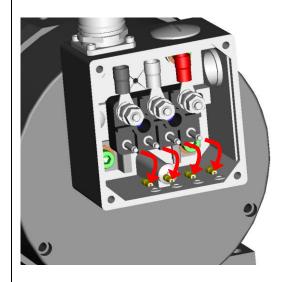
For MGV4, 6 or 8, it's possible to rotate the terminal box to change the direction of the cable output. Please, find below the step by step process:


4.3.3.1. MGV4

Step 1

Remove the cap of the terminal box

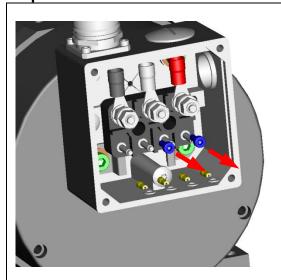
Step 2



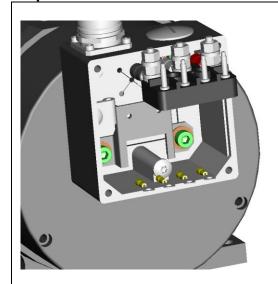
Remove the 4 nuts of the auxiliaries terminals

<u>Warning</u>: KTY sensor is sensitive to electrostatic discharge. So, always wear an antistatic wrist strap during KTY handling.

Disconnect the auxiliaries terminals.

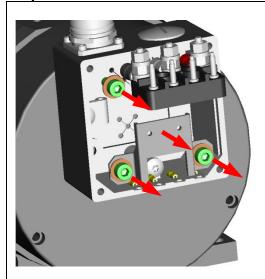

Be careful: Keep in mind the right position for re-connection in next step.

Recommendation: connect KTY+ and KTY- together to avoid electrostatic damage during operation.

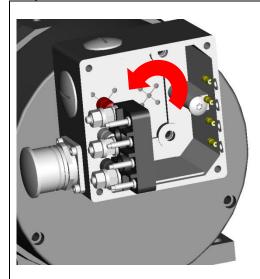

<u>Warning</u>: KTY sensor is sensitive to electrostatic discharge. So, always wear an antistatic wrist strap during KTY handling.

Step 4

Remove the 2 screws that fix the terminal

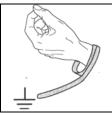


Turn the terminal like the picture.


Be careful: do not hurt the power cables.

Step 6

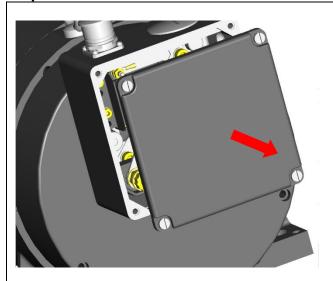
Remove the 4 screws and terminal support that fix the box.


Rotate the box in clockwise or counterclockwise

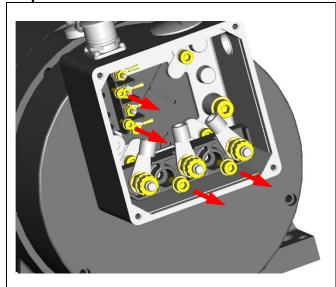
Step 8

Re-assemble from step 6 to 1.

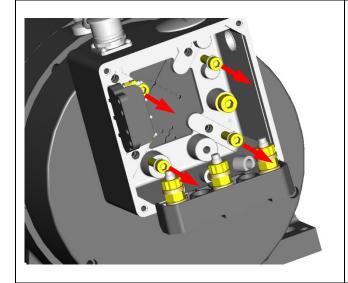
Attention: respect the tightening torques from §4.2.1



<u>Warning</u>: KTY sensor is sensitive to electrostatic discharge. So, always wear an antistatic wrist strap during KTY handling.

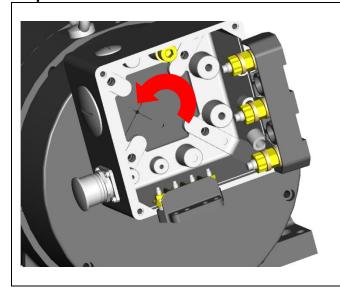

4.3.3.1. MGV6 and MGV8

Step 1


Remove the cap of the terminal box

Step 2

Remove all the screws that fix the terminals (power and auxiliaries)



Turn the terminals like the picture.

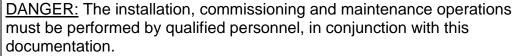
Remove the 4 screws that fix the box.

Step 4

Rotate the box in clockwise or counterclockwise

Step 8Re-assemble from step 4 to 1.

Attention: respect the tightening torques from §4.2.1



Warning: KTY sensor is sensitive to electrostatic discharge. So, always wear an antistatic wrist strap during KTY handling.

4.4. Maintenance Operations

Generality

The qualified personnel must know the safety (C18510 authorization, standard VDE 0105 or IEC 0364) and local regulations.

They must be authorized to install, commissioning and operate in accordance with established practices and standards.

Please contact PARKER for technical assistance.

Operation	Periodicity	Section number
Vibration and bearings temperature checking	Every 3000h	§3.4.7
Alignment checking	Every year	§4.2.4
Cooling water quality inspection	Every year	§3.6
Check all tightening torques on all screws in the terminals box	Every year	§4.2
Clean the motor	Every year	

4.5. Troubleshooting

We provide hereunder a symptom list in regard with their possible cause. This is not an exhaustive list so in case of trouble, please refer to the associated servo drive manual (the diagnostic board indications will help you investigating) or contact us at: http://www.parker.com/eme/repairservice.

You note that the motor does not turn by hand when the motor is not connected to the drive.	 Check there is no mechanical blockage or if the motor terminals are not short-circuited. Check the power supply to the brake.
You have difficulty starting the motor or making it run	 Check on the fuses, the voltage at the terminals (there could be an overload or the bearings could be jammed), also checks on the load current. Check the power supply to the brake (+ 24 V ± 10 %) and its polarity. Check on any thermal protection, its connection and how it is set in the drive. Check on the servomotor insulation (if in doubt, carry out hot and cold measurements). The minimum insulation resistance value measured under a max. 50V DC is 50 MΩ: Between the phase and the casing Between the thermal protection and the casing Between the brake coil and the casing
	Between the resolver coils and the casing.
You find that the motor speed is drifting	 Reset the offset of the servoamplifier after having given a zero instruction to the speed setpoint input.
You notice that the	Check the speed setpoint of the servo drive.
motor is racing	 Check you are well and truly in speed regulation (and not in torque regulation).
	Check the encoder setting
	Check on the servomotor phase order: U, V, W
You notice vibrations	 Check the encoder and tachometer connections, the earth connections (carefully) and the earthing of the earth wire, the setting of the servo drive speed loop, tachometer screening and filtering. Check the stability of the secondary voltages. Check the rigidity of the frame and motor support. Check motor fixing on its base. Check the balancing.
	Check the alignment between motor and load.

You think the motor is becoming unusually hot	 It may be overloaded or the rotation speed is too low: check the current and the operating cycle of the motor. Check if the mounting surface is enough or if this surface is not a heat source – see §3.6 cooling. Friction in the machine may be too high: Test the motor current with and without a load. Check the motor does not have thermal insulation. Check that there is no friction from the brake when the brake power is on. Check the cooling circuit
You find that the motor	Several possible explanations :
is too noisy	 Unsatisfactory mechanical balancing There is friction from the brake: mechanical jamming.
	Defective coupling
	Loosening of several pieces
	 Poor adjustment of servo drive or position loop : check rotation in open loop
	Low drive switching frequency
The motor is warmer on its top	Air bubbles can be stocked in the water cooling circuit. You need to purge the circuit or to double the water flow rate during 10 minutes to remove the air bubbles.