SIEMENS

SIMOREG K 6RA22 Analog Chassis Converters

Catalog DA 21.2 · 2001

DC Motors

DA 12	

Order No .: E20002-K4012-A101-A2 E20002-K4012-A101-A2-7600 German: English: DC Motors 1GG7, 1GH7, 1HS7 and 1HQ7

DC Motors 1GG7, 1G	s H7, 1HS7 and 1HQ7	DA 12 Supplemen July 2001	t
German: English:	E86060-K5112-E101-A1 E86060-K5112-E101-A1-7600		
DC Drives Preferred	s Series up to 500 kW	DA 12.1	
German: English:	E20002-K4012-A111-A2 E20002-K4012-A111-A2-7600		
DC Drives Preferred	Series 215 kW to 1500 kW	DA 12.2	
German: English:	E20002-K4012-A121-A1 E20002-K4012-A121-A1-7600		
SIMOREG Digital Ch	6RA70 DC MASTER assis Converters	DA 21.1	
German: English:	E86060-K5121-A111-A1 E86060-K5121-A111-A1-7600		
SIMOREG Converter Order No.: German: English:	6RA22 Analog Chassis s E86060-K4021-A121-A1 E86060-K4021-A121-A1-7600	DA 21.2	
Spare Par Converter	ts for SIMOREG s (Chassis Units)	DA 21 E	

Order No.: German: English:	E20002-K4021-A900-A4 E20002-K4021-A900-A4-7600		
SIMOREG	Static Converter Cabinets	DA 22	ļ
Order No.:			

E20002-K4022-A101-A3 E20002-K4022-A101-A3-7600 German: English:

Automation and Drives Order No.: German: E8606 English: E8606 E86060-D4001-A100-B5 E86060-D4001-A110-B4-7600

Visit Siemens Automation and Drives Group on the Internet at http://www.siemens.de/automation

SIEMENS

SIMOREG K 6RA22

Analog Chassis Converters

Catalog DA 21.2 · 2001

Supersedes: Catalog DA 21 · 1998

SIMOREG K Chassis Converters 6RA22

SIMOREG K Field Supply Units

Supplementary Units for Drives

Planning Guide

Appendix · Index

Note!

The technical data is intended for general information.

Please observe the Operating Instructions and the references indicated on the products for installation, operation and maintenance.

® SIMOREG and SITOR are Siemens registered trademarks.
 All other products and systems names in this catalog are (registered) trademarks of their respective owners and must be
 treated accordingly.

• The technical data, selection and ordering data (Order Nos.), accessories and availability are subject to alteration.

• All dimensions in this catalog are stated in mm.

© Siemens AG 2001

TH

1/2	Design and mode of operation
	Technical data
	Block diagrams / Terminal assignment
	Ordering and engineering data
1/21	Dimension drawings
1/22	Supplementary boards / Accessories

Design and mode of operation

Applications

6RA22 SIMOREG K converters for single-phase or three-phase input are used for the armature supply of shunt-wound DC motors. Even in the basic version, 6RA22 converters have several technological functions, such as:

- a ramp-function generator,
- a limit monitor,
- armature voltage actual value sensing with (I x *R*) compensation for units in B2HK and B6C connections (i.e. the tacho-generator is not required),
- an automatic electronic switch-on/off circuit for units in (B2)A(B2)C, (B6)A(B6)C connections,
- for units in (B2)A(B2)C, (B6)A(B6)C connections, additional inputs and outputs are routed to a matrix board for customized circuits.

Function options provide additional advantages, such as:

- separately adjustable P gain and integral action time for the speed controller,
- supplementary current setpoint incorporated in the current limiting,
- speed actual value adaptation with fine adjustment.

Design and mode of operation

6RA22 SIMOREG K converters for single-phase input are available in two types of construction. Units with housing are recommended for single-motor drives. Units without housing, installed in a sub-rack, provide a space-saving arrangement where two or more drives are to be combined to form a unit.

Power section

6RA22 SIMOREG K converters for single-phase, singlequadrant drives have B2HK half-controlled, single-phase bridge connections, and 6RA22 SIMOREG K converters for single-phase, fourquadrant drives have a circulating-current-free inverseparallel connection with two fully controlled single-phase bridge circuits (B2)A(B2)C.

6RA22 SIMOREG K converters for three-phase singlequadrant drives use a fully-controlled three-phase bridge connection B6C; SIMOREG K converters for three-phase, four-quadrant drives in circulating-currentfree inverse-parallel connection use two fully controlled three-phase bridge circuits (B6)A(B6)C.

Cooling

6RA22 SIMOREG K converters with rated DC \leq 160 A are designed for natural air cooling, and units with rated DC \geq 240 A for forced air cooling (fan).

Field power supply

For 6RA22 SIMOREG K converters (except for the (B2)A(B2)C connection), a field rectifier in an uncontrolled single-phase bridge circuit B2 is integrated in the unit. When the rectifier is connected to a two-phase 400 V supply voltage, a rated output voltage of 340 V is obtained at terminals C2/D2, and when connected to a two-phase 230 V supply, a rated output voltage of 200 V is obtained. For 6RA22 SIMOREG K converters with (B2)A(B2)C connection, a field supply unit, e.g. the 6RA2200-8DD00 (refer to Section 3 of this Catalog) should be separately ordered and fitted.

Fig. 1/1 Converters in B2HK connection for single-quadrant drives, without enclosure

Design and mode of operation

Power supply

The power supply of the 6RA22 SIMOREG K converter provides the following:

- Unregulated ±24 V voltages for the trigger pulses and relays;
- regulated ±15 V voltages for the controllers and internal signal processing (external ±50 mA max.);
- regulated ±10 V voltages as reference voltages (e.g. for the setpoints; external ±10 mA).

The power supply transformer input for converters in B2HK connection is taken directly from the incoming supply (terminals U1, V1). Depending on the supply voltage (two-phase 400 V or two-phase 230 V), a jumper must be changed at the input of the power supply transformer. Converters in (B2)A(B2)C connection have separate supply terminals for the power supply transformer and the power section. Here too, either the two-phase 400 V or two-phase 230 V can be connected. Converters in B6C and (B6)A(B6)C connection are connected to three-phase 400 V through separate power supply terminals.

The supply voltages for the controllers (\pm 15 V) are regulated with an accuracy of approx. 1%, and the reference voltages (\pm 10 V) with an accuracy of 1‰ so that essentially only the speed actual value sensing values are decisive (DC tacho-generator).

Functions of the open-loop and closed-loop control for converters in B2HK and B6C connections

Ramp-function generator

In response to a step-change in input voltage (external speed setpoint), the rampfunction generator limits the rate of change of the speed setpoint fed to the speed controller to a technologically permissible value for the drive. Ramp-up and ramp-down times are adjustable via a potentiometer. The setting range of the potentiometer can, if necessary, be adapted to other conditions by changing a capacitor.

Speed controller

The speed controller has three inputs:

- The speed actual value can either be supplied from the integral armature voltage actual value sensing with (*I* x *R*) compensation or from a DC tacho-generator. The actual value voltage is adapted and the maximum speed set using two potentiometers for coarse and fine adjustment.
- The speed setpoint is either supplied from the integral ramp-function generator or directly via a terminal.
- A supplementary speed setpoint can be fed to the speed controller either directly via a terminal or via an adjustment potentiometer (e.g. compensator roll controller) or from the internal current actual value and potentiometer V (for (*I* × *R*) compensation for EMF control without tacho-generator).

Fig. 1/3 Converters in (B2)A(B2)C connection for four-quadrant drives

Fig. 1/4 Converters in (B6)A(B6)C connection for four-quadrant drives, with enclosure

The speed controller has separate amplifiers for the P and I components. The P gain and I component can be adjusted separately, and thus very easily at start-up.

A supplementary setpoint, preset via a terminal, can be added to the speed controller output value (current setpoint) via a summing amplifier connected after the speed controller. The output value (current setpoint + supplementary current setpoint) is limited by a limiting controller (current limiting). Current limiting is internally set to a maximum value (the maximum being the converter's rated DC) and can be externally set to lower values via a terminal.

Design and mode of operation

Current controller

The current controller is configured as a Pl controller with gain and integral-action time designed for armature supply. The feedback can be adapted by soldering-in other components.

The current controller's output voltage is limited by two limiting controllers to values corresponding to the maximum and minimum converter firing-angle setting.

The current actual value is sensed with a current transformer and is fed to the current controller with electrical isolation. The current setpoint is supplied from the speed controller.

Trigger unit

The trigger unit generates the control pulses for triggering the thyristors, according to the output voltage of the current controller. The trigger unit automatically adapts itself to different supply frequencies or supply frequencies which change over the range 45 to 65 Hz during operation.

Automatic switch-on circuit and controller enable for units in the B2HK connection

When the converter has been switched on, the automatic switch-on circuit only enables operation when the power supply has established its voltages and the controllers are enabled.

Controller enable can be initiated immediately with the enable signal by the automatic switch-on circuit (terminals 8/20 jumpered) or in accordance with other operating states (terminals 8 and 20 connected via an enable contact).

Converters in B6C connection have a switch-on control as described for units in (B2)A(B2)C or (B6)A(B6)C.

Limit monitor

The limit monitor serves to detect whether a value has dropped below or exceeded a speed or current setpoint. In the basic configuration, a speed dropping below about 5% of the rated speed is signaled (0 V at terminal 14). The response value can be adapted by changing a resistor or by setting a potentiometer (for units in B6C connection).

Operating state display

The following operating states are indicated by LEDs:

- Converter is switched on.
- Controllers are enabled.
- Limit monitor has responded.

Functions of open-loop and closed-loop control for converters in (B2)A(B2)C or (B6)A(B6)C connections

Ramp-function generator

The ramp-function generator responds to a step-change in input voltage (external speed setpoint) by limiting the rate of change of the speed setpoint fed to the speed controller to a technologically permissible value for the drive. Ramp-up and ramp-down times are adjustable via two potentiometers independently of each other, over the range 2 to 30 s. The setting range can be adapted to other conditions, if necessary, by changing a capacitor.

Fig. 1/5 6DM9005 subrack equipped with 6RA22 SIMOREG K converters without enclosure

Speed controller

The speed controller has three inputs:

- The speed actual value is supplied from a DC tacho-generator. The actual value voltage is adapted and the maximum speed set by means of two potentiometers for coarse and fine adjustment.
- The speed setpoint is supplied either from the integral ramp-function generator or through a free input and the matrix board.
- A supplementary speed setpoint can be fed in via a free input and the matrix board.

The speed controller is configured with separate amplifiers for the P and I components. The P gain and I component can be adjusted separately, and thus very easily at start-up.

A supplementary current setpoint, preset via a free input and the matrix board, can be added to the output value of the speed controller (current setpoint) via a summing amplifier connected after the speed controller. The output value (current setpoint + supplementary current setpoint) is limited in the positive and negative directions by two limiting controllers (current limiting). The current limiting is internally set to a maximum value (the maximum being the rated DC). Lower values can be set externally by providing a suitable circuit on the matrix board, and by feeding in via a free (lowresistance) output terminal.

Current controller

The current controller has very high-grade dynamic performance with the following functions:

- Trigger unit feed-forward control with
- Pl control with corrective intervention
- Current-dependent stability limit changeover.

The controller can be optimized without measuring instruments, using only the integral LEDs.

The PI controller feedback is designed for armature supply. It can be adapted to other applications by soldering-in other components.

The output voltage of the current controller is limited by two limiting controllers to values corresponding to the maximum and minimum firing-angle setting of the converter.

The current actual value is sensed via an AC current transformer (with series-connected rectifier and load resistor) and fed to the current controller. The current setpoint is supplied by the speed controller.

The trigger unit and autoreverse stage

The trigger unit generates the control pulses for triggering the thyristors, according to the output voltage of the current controller. By means of the auto-reverse stage, the trigger pulses are fed, according to the required torque direction, to the thyristors associated with the required current direction via pulse amplifiers and the transformer section. The trigger unit automatically adapts itself to different supply frequencies, or supply frequencies which change over the range 45 to 65 Hz during operation.

The auto-reverse stage, together with the current controller and trigger unit, reverses the current direction when the current setpoint polarity changes (torque direction), by logically processing the conditions.

Automatic switch-on and switch-off circuit

The automatic switch-on and switch-off circuit assumes the function of an external interlock comprising an IC system, relays or contactors.

After the switch-on command and after the power supply voltages have developed, the power contactor is switched-in through a relay integrated in the converter, and operation is enabled after a checkback signal and an optional, additional external controller enable signal.

After the switch-off command, the current is first reduced by shifting the trigger pulses to the inverter stability limit and the power contactor is then switched off when the current is zero.

Design and mode of operation

Limit monitor

The limit monitor can be used to detect whether a value has dropped below or exceeded a speed or current setpoint. Responding of the limit monitor is indicated by an LED. The response value can be set on a potentiometer. The output of the limit monitor can also optionally be set to setpoint/actual value monitoring by changing a plug-in jumper (refer to "Setpoint/actual value monitoring and fault signal").

The basic configuration is such that a signal is output when a speed drops below about 5% of the rated speed (P24 at terminal 14). If the speed is not reached, an L signal is output at terminal 14.

Setpoint/actual value monitoring and fault signal

In their basic configuration, the converters have a stall protection function which responds if a long-term speed setpoint/actual value deviation occurs. The protective function can only be practically used in conjunction with the ramp-function generator. However, the protective function can be changed over to a setpoint/actual value signal by removing a diode.

The output signal of the limit monitor can also be set to setpoint/actual value monitoring and used for a protective function (controller inhibit) by changing over a plug-in jumper.

Any fault signal from the protective function is stored and indicated by an LED. It can only be acknowledged and cleared by pressing a button.

Freely usable functions and mounting locations

Required supplementary functions can be created in the converter, to a limited extent, by using these facilities.

Four inputs and four outputs, each routed via terminals, as well as two inputs with switching function, are available. The inputs are equipped with resistors and capacitors for use as analog inputs. The outputs are routed via an RC circuit for noise suppression. The inputs with switching function each transfer an external electronic or contact switching signal in a floating arrangement through an optocoupler.

All signals are fed to a matrix board on which the required supplementary functions can be established. Various values from the power supply and closed-loop control are also fed to the matrix board.

Order No.		6RA228DD21				6RA228	6RA228DD21			
		03	11	16	21	03	11	16	21	
Converters for single-phase co	onnection a	nd single-qu	adrant opera	tion (B2HK)						
Rated supply voltage 3)	V	2-ph. 230 (+	10%/-10%)			2-ph. 400	(+10%/-10%)			
Rated frequency		Automatic a	daptation 45 t	o 65 Hz						
Rated DC voltage	V	180				315				
Rated direct current	A	5	12	22	40	5	12	22	40	
Rated output	kW	0.9	2.2	4.0	7.2	1.6	3.8	6.9	12.6	
Power loss										
at rated direct current (approx.)	W	30	50	80	135	30	50	80	135	
Rated supply voltage, field	V	max. 2-ph. 4	00 V (+10%) a	at U2-V2						
Rated DC voltage, field	V	340								
Rated current, field	А	1.5	1.5	5.0	5.0	1.5	1.5	5.0	5.0	
Ambient in-service		0 4 4 5 0 4								
temperature ³)	υČ	0 to 45° at ra	ited DC							
Temperature during storage and transportation	°C	-30 to +85								
Site altitude above sea level ⁶)	m	≤ 1 000 at ra	ted DC							
Control stability ⁴)		0.1% of rate	d speed							
Humidity rating DIN 40 040, SN 2	26 556	F								
Degree of protection DIN 40 050), IEC 144	IP 00								
Dimensions		See dimens	ion drawings							
Weight (approx.) ¹)	kg	2.2	2.2	2.8	4.4	2.2	2.2	2.8	4.4	
Weight (approx.) ²)	kg	1.25	1.25	1.6	3.6	1.25	1.25	1.6	3.6	
Mounting width (basic grid dime	nsion) ²)	22	22	36	50	22	22	36	50	

1) For converters with enclosure: 6RA22..-8DD21-1

2) For draw-out converters: 6RA22..-8DD21-0

3) The rated output voltage for the armature and field circuits is reached at 5% undervoltage in the line-side supply. If the rated input voltage value is higher. If the undervoltage value will be 5% higher. If the undervoltage is more than 5%, the output voltage must be reduced linearly.

Conditions: The control stability is referred to the rated motor speed and applies to SIMOREG K units at operat-ing temperature.

The following conditions apply:

- \bullet Temperature fluctuations of ±10 ° K
- Line voltage fluctuations of +10% -5% of rated supply voltage
- Load fluctuations of up to 100% of maximum torque
- Temperature coefficient of temperature-compensated tacho-generator 0.15% per 10 ° K
- Constant setpoint

- 5) Load values as a function of coolant temperature
- Ambient or Derating in coolant temperature units with natural air cooling +35° C +40° C +45° C 0% +50° C -6% +55° C -11% +60° C -18%

6) Load values as a function of site altitude

Fig. 1/6

6RA22..-8DK27-..

	03		10	21	03		10	21
nectiona	nd four-qu	adrant operati	on (B2\A(B2\C					
Rated supply voltage 3)								
	Automati	c adaptation 45	to 65 Hz			(,		
V	150				260			
А	5	12	22	40	5	12	22	40
kW	0.75	1.8	3.3	6	1.3	3.1	5.7	10.4
W	35	60	85	140	35	60	85	140
mA	80							
°C	0 to 45							
°C	-30 to +85	5						
m	≤1 000 at	rated DC						
	0.1% of ra	ated speed						
556	F							
EC 144	IP 00							
	See dime	nsion drawings						
kg	2.8	2.8	3.1	5.4	2.8	2.8	3.1	5.4
kg	1.8	1.8	2.1	4.1	1.8	1.8	2.1	4.1
	22	22	52	66	22	22	52	66
	nection a V V A kW W mA ° C ° C m 556 EC 144 kg kg	V 2-ph. 230 Automatin V 150 A 5 kW 0.75 W 35 mA 80 °C 0 to 45 °C -30 to +88 m<	vist 1 v 2-ph. 230 (+10%/-10%) Automatic adaptation 45 V V 150 A 5 12 kW 0.75 1.8 W 35 60 mA 80	os II Io nection and four-quadrant operation (B2)A(B2)C V 2-ph. 230 (+10%/-10%) Automatic adaptation 45 to 65 Hz V 150 A 5 12 22 kW 0.75 1.8 3.3 W 35 60 85 mA 80	os II Ib Z1 nection and four-quadrant operation (B2)A(B2)C V 2-ph. 230 (+10%/-10%) Automatic adaptation 45 to 65 Hz V 150 Automatic adaptation 45 to 65 Hz V A 5 12 22 40 kW 0.75 1.8 3.3 6 W 35 60 85 140 mA 80	If 16 21 03 nection and four-quadrant operation (B2)A(B2)C V 2-ph. 230 (+10%/-10%) 2-ph. 400 Automatic adaptation 45 to 65 Hz 260 V 150 260 A 5 12 22 40 5 kW 0.75 1.8 3.3 6 1.3 W 35 60 85 140 35 mA 80	V 2-ph. 230 (+10%)/-10%) 2-ph. 400 (+10%)/-10%) Automatic adaptation 45 to 65 Hz 2-ph. 400 (+10%)/-10%) V 150 260 A 5 12 22 40 5 12 kW 0.75 1.8 3.3 6 1.3 3.1 W 35 60 85 140 35 60 mA 80 - - - - °C 0 to 45 - - - - °C -30 to +85 - - - - m <1 000 at rated DC	O3 II IB ZI O3 II IB N 2-ph. 230 (+10%/-10%) 2-ph. 400 (+10%/-10%) Automatic adaptation 45 to 65 Hz 2-ph. 400 (+10%/-10%) Automatic adaptation 45 to 65 Hz 260 2 22 40 5 12 22 KW 0.75 1.8 3.3 6 1.3 3.1 5.7 W 35 60 85 140 35 60 85 mA 80

6RA22..-8DK27-..

1) For converters with enclosure: 6RA22..-8DK27-1

2) For draw-out converters: 6RA22..-8DK27-0

3) The rated output voltage for the armature and field circuits is reached at 5% undervoltage in the line-side supply. If the rated input voltage value is higher. If the undervoltage value will be 5% higher. If the undervoltage is more than 5%, the output voltage must be reduced linearly.

Order No.

4) Conditions: The control stability is referred to the rated motor speed and applies to SIMOREG K units at operat-ing temperature.

The following conditions apply:

- \bullet Temperature fluctuations of ±10 $\,^{\circ}$ K
- Line voltage fluctuations of +10% -5% of rated supply voltage
- Load fluctuations of up to 100% of maximum torque
- Temperature coefficient of temperature-compensated tacho-generator 0.15% per 10 ° K
- Constant setpoint

5) Load values as a function of coolant temperature

6) Load values as a function of site altitude

Fig. 1/7

Order No.		6RA228	DS31							
		20	23	26	30	32	33	76	80	83
Convertors for three phase con	nontion	nd cinalo au	undrant or	oration (B6C)						
Rated supply voltage Power ¹)	V	3-ph. 400	(+10%/-15	%)						
Rated supply voltage Electronics power supply	V	3-ph. 400	(+35%/-20	%), 40 mA						
Rated supply voltage Fan	V							2-ph. 23((+10% / -10%) 0.12 A Air flow r 160 m ³ /r) ate	2-ph. 230 (+10%/ -10%) 0.24 A 320 m ³ /h
Rated supply voltage, field	V	2-ph. max	. 400 (+35%	6)						
Rated frequency	Hz	Automatic	adaptatior	n 45 to 65						
Rated DC voltage	V	485								
Rated direct current	А	35	50	70	110	130	160	240	350	500
Rated output	kW	17	24	34	53	63	78	116	170	242
Power loss at rated direct current (approx.)	W	130	170	230	350	410	500	760	1 100	1 580
Rated DC voltage, field	V	340								
Rated direct current, field	А	8	8	8	8	8	8	15	15	15
Ambient in-service temperature ³)	°C	0 to 45 at r natural air	ated DC, cooling					0 to 35 at forced-ai	rated DC, r cooling	
Temperature during storage and transportation	°C	-30 to +85								
Site altitude above sea level ⁴)	m	≤1 000 at	rated DC							
Control stability 2)		$\Delta n = 0.1\%$	% of rated s	peed						
Humidity rating DIN 40 040, SN 26	6 556	F								
Degree of protection DIN 40 050,	IEC 144	IP 00								
Dimensions		See dimer	nsion drawi	ngs						
Weight (approx.)	kg	4.4	4.4	6.5	10.3	10.8	12.4	22.2	24	30

The rated output voltage for the armature and field circuits is reached at 5% undervoltage in the line-side supply. If the rated input voltage value is present, the output voltage value will be 5% higher. If the undervoltage is more than 5%, the output voltage must be reduced linearly.

Conditions: The control stability is referred to the rated motor speed and applies to SIMOREG K units at operat-ing temperature.

The following conditions apply:

- Temperature fluctuations of ±10 ° K
- Line voltage fluctuations of +10% -5% of rated supply voltage
- Load fluctuations of up to 100% of maximum torque
- Temperature coefficient of temperature-compensated tacho-generator 0.15‰ per 10 ° K
- Constant setpoint

3) Load values as a function of coolant temperature

Ambient or coolant temperature	Derating in units with natural air cooling	Derating in units with forced – air cooling
		0.07
+35° C		0%
+40° C		-6%
+45° C	0%	-12%
+50° C	-6%	-17%
+55° C	-11%	
+60° C	-18%	

4) Load values as a function of site altitude

									Techr	ical data
Order No		6BA22 -	8DV71							
		20	23	26	30	32	33	76	80	83
Converters for three-phase co	onnection a	nd four-qua	adrant opera	ation (B6)A(B	6)C)					
Rated supply voltage Power ¹)	V	3-ph. 400)(+15%/-10%	%)						
Rated supply voltage Electronics power supply	V	3-ph. 400)(+35%/-20%	%), 40 mA						
Rated supply voltage Fan	V							2-ph. 230 0.24 A Air flow r 320 m ³ /r) (+10%/-10%) ate	
Rated supply voltage, field	V	2-ph. ma	x. 400 (+35%	6)						
Rated frequency	Hz	Automati	c adaptation	45 to 65						
Rated DC voltage	V	420								
Rated direct current	A	35	50	70	110	130	160	240	350	500
Rated output	kW	14.7	21	29	46	55	67	100	147	210
Power loss at rated direct current (approx.)	W	130	170	230	350	410	500	780	1 130	1 580
Rated DC voltage, field	V	340								
Rated direct current, field	А	8	8	8	8	8	8	15	15	15
Ambient in-service temperature ³)	°C	0 to 45 at natural air	rated DC, r cooling					0 to 35 at forced-ai	rated DC, r cooling	
Temperature during storage and transportation	°C	-30 to +8	5							
Site altitude above sea level ⁴)	m	≤1 000 a	t rated DC							
Control stability ²)		$\Delta n = 0.1^{\circ}$	% of rated sp	eed						
Humidity rating DIN 40 040, SN	26 556	F								
Degree of protection DIN 40 050), IEC 144	IP 00								
Dimensions		See dime	ension drawir	ngs						
Weight (approx.)	kg	5.4	5.4	7.3	15.4	15.9	17.5	22.2	24	30

1) The rated output voltage for the armature and field circuits is reached at 5% undervoltage in the line-side supply. If the rated input voltage value is present, the output voltage value will be 5% higher. If the undervoltage is more than 5%, the output voltage must be reduced linearly.

Conditions: The control stability is referred to the rated motor speed and applies to SIMOREG K units at operat-ing temperature.

The following conditions apply:

- Temperature fluctuations of ±10 ° K
- Line voltage fluctuations of +10% -5% of rated supply voltage
- Load fluctuations of up to 100% of maximum torque
- Temperature coefficient of temperature-compensated tacho-generator 0.15‰ per 10 ° K
- Constant setpoint

3) Load values as a function of coolant temperature

Ambient or coolant temperature	Derating in units with natural air cooling	Derating in units with forced – air cooling
+35° C		0%
+40° C		-6%
+45° C	0%	-12%
+50° C	-6%	(-17%)
+55° C	-11%	
+60° C	-18%	

4) Load values as a function of site altitude

	Function	Terminal	Туре	Connection values	Comments
		2011/			
Connections of 6RA2	2 SIMOREG K converters in	B2HK connec	tion for singl	e-quadrant drives	
Power section	L1 L2	V1	Input	2-ph. 400 V or 2-ph. 230 V	See technical data
	+ -	C1 D1	Output Output	max. 315 V or 180 V max. 315 V or 180 V	
Field rectifier	L1	U2 V2	Input Input	2-ph. 400 V 2-ph. 400 V	See technical data
	+ -	C2 D2	Output Output	340 V 340 V	
Power supply	L1 L2		-	2-ph. 400 V or 2-ph. 230 V	Connected internally to terminals U1/V1 of the power section. For 400 V solder jumper E2-E1 closed, for 230 V solder jumper E2-E3 closed.
	M P N P24	7 10 11 16	Output Output Output Output	0 V (M potential) +15 V/50 mA - 15 V/50 mA +24 V/50 mA	Total loading for each polarity: 50 mA
	M P10 N10	6 12 13	Output Output Output	0 V (ref. potential) +10 V/10 mA - 10 V/10 mA	Connection for speed setpoint potentiometer M/P10: with ramp-function generator, jumper C5-C4 closed; M/N10: without ramp-function generator, jumper C5-C6 closed.
Speed controller	Setpoint	4	Input	0 to +10 V/200 kΩ	Jumper C5-C4 closed: ramp-function
		4	Input	0 to -10 V/20 kΩ	Jumper C5-C6 closed: speed controller setpoint input
		9	Output	0 to -10 V	Jumper B5-B4 closed: ramp-function generator output (e.g. for 2nd unit)
		9	Input	0 to +10 V	Jumper B5-B6 closed: summing amplifier setpoint input (supplementary current setpoint)
	Actual value	2 1 3	Input Input Input	0 V (ref. potential) 80 to 220 V/78 kΩ 30 to 90 V/31 kΩ 10 to 40 V/12 kΩ	Jumper B2-B3 closed: speed controller actual value input (connection only for speed actual
	Ext. current limiting	19	Input	0 to +10 V	Current setpoint + supplementary
Current controller	Setpoint	18	Output	0 to +10 V	Jumper C2-C1 closed:
		18	Input	0 to +10 V	current setpoint from speed controller Jumper C2-C3 closed: external current setpoint
Other functions	Controller enable (Pi) (Rf)	8 20	Output Input	+24 V/100 Ω +20 to +30 V/4 mA	Power supply for ext. controller enable Connect to terminal 8 for controller enable
	Limit monitor	14	Output	Open collector	Jumpers A2-A3 and A5-A4 closed: speed actual value interrogation ($n > comparison$ voltage results in P24 over 2.7 k Ω ; jumpers A2-A1 and A5-A6 closed: current actual value interrogation ($i > comparison$ voltage results in M)
	Potentiometer R86	17 17	Input Input	0 to -10 V/10 kΩ 0 to -10V	Jumper C8-C9 closed: speed controller setpoint input (supplementary speed setpoint) Jumper C8-C7 closed: speed controller setpoint input (<i>I x R</i>) compensation for EMF control without tacho-generator.
	Potentiometer R86 tap	15	Output	0 to -10 V	Jumper C8-C7 closed, resistor R97 removed: current actual value tap
		15	Output	0 to ± 10 V/10 k Ω	Jumper C8-C9 closed, resistor R97 removed: potentiometer R86 can be used as required.

Block diagrams / Terminal assignment

Function	Matrix board	Function	Matrix board
Matrix board assignment for 6RA22 SIMOREG K converte	rs in connection (E	32)A(B2)C for four-quadrant drives	
Supplementary setpoint input, speed controller	RA1	Output, free CMOS inverter	RB6
Setpoint filtering, speed controller	RA2	Input, free CMOS inverter	RB7
Input positive current limit	RA3	Input, current setpoint to current control loop	RB8
Input negative current limit	RA4	Input, supplementary current setpoint before current limiting	RB9
Input EMF actual values for EMF precontrol	RA5	Output n (±10 V)	RB11
Free output via terminal X23.18 (filtered)	RA6	Output + i (±10 V)	RB13
Free output via terminal X23.17 (filtered)	RA7	Separate inhibit for ramp-function generator (+15 to +24 V inhibits)	RB15
Free input via 2 x 10 k Ω /10 nF at terminal X23.26	RA8	Input, speed setpoint at speed controller	RC1
Free input via 2 x 10 k $\Omega/10$ nF at terminal X23.25	RA9	Speed controller output after current limiting	RC3
Free input via 2 x 10 k Ω /10 nF at terminal X23.24	RA10	Technology connector X1.7	RC4
Free input via 2 x 100 k $\Omega/10$ nF at terminal X23.23	RA11	Current actual value	RC5
Free FET switch (1) driven via terminal X23.22	RA12/RA13	Positive reference voltage +10 V	RD1
Free FET switch (2) driven via terminal X23.21	RA14/RA15	Negative reference voltage -10 V	RE1
Free output via 2 x 56 $\Omega/47$ nF at terminal X23.16	RA 16	M reference potential 0 V	RF1
Free output via 2 x 56 $\Omega/47$ nF at terminal X23.15	RA17	P15 regulated +15 V	RG1
Direct connection to terminal X23.18	RA18	N15 regulated -15 V	RH1
Ramp-function generator output	RB1	Output, fault signal	RM4
Extension input for ramp-function generator	RB3	Ack. button connection to reset fault signal	RM5/RM6
Technology connector X1.1	RB4	Connection to X35.32	RM8
Matrix board assignment for SIMOREG K converters in circ	cuit B6C for single	-quadrant drives	
Power supply		+10 V (P10)	RA4*)
		- 10 V (N10)	RA5*)
		0 V (M)	RA3*)
		+15 V (P)	RA1*)
		- 15 V (N)	RA2*)
Speed controller		Speed setpoint	RA9
		Speed controller setpoint smoothing	RA13
		Speed actual value	RA12
		Ramp-function generator output overdrive amplifier	RA11
		Controller enable	RA6
		Current limiting B+	RA7
		Current actual value	RA8
		Extension input, ramp-function generator	RB9
Otherfunctions		Current actual value V _{actual}	RA10
		Speed actual value decoupled	RH1
		Supplementary current setpoint	RB11
		Current actual value decoupled	RR7
		Input, reset ramp-function generator	RR3
Matrix board assignment for SIMOREG K converters in circ	cuit (B6)A(B6)C fo	r four-quadrant drives	
Selector output terminal X1.18 without smoothing	RA4	+10 V (P10)	RD1
Selector output terminal X1.18 with smoothing 2 x 50 Ω /47 nF	RA5	- 10 V (N10)	RE1
Selector output terminal X1.17 with smoothing 2 x 50 $\Omega/47$ nF	RA6	0 ∨ (M)	RA1
Selector output terminal X1.16 with smoothing 2 x 50 Ω /47 nF	RA9	+15 V (P)	RB1
Selector output terminal X1.15 with smoothing 2 x 50 Ω /47 nF	RA10	- 15 V (N)	RC1
Selector input terminal X1.26 (2 x 10 k Ω /10 nF)	RA7	Speed setpoints smoothing	RF2
Selector input terminal X1.25 (2 x 10 k Ω /10 nF)	RA8	Speed actual value	RG2
Selector input terminal X1.24 (2 x 50 k Ω /10 nF)	RA11	Connection to technology connector (X4.1)	RD2
Selector input terminal X1.23 (2 x 100 k Ω /10 nF)	RA12	Connection to technology connector (X4.7)	RC2
Free inverter (input)	RB6	Ramp-function generator supplementary setpoint	RB9
Free inverter (output)	RB7	Output, speed controller	RB2
Free FET switch	RA15, RA16	Speed supplementary setpoint	RB5
	DA10	Positive current limiting	RE2
riee FET SWITCH (via optocoupler input terminal 22)	RA13, RA14	Negative current limiting	RB10
Current setpoint	RB4	EMF precontrol external	RA3
Speed setpoint	RB3	Free terminal 27	RI16
Current actual value	RB8	Free terminal 28	RK16
Speed actual value	RH1	± current actual value	RO7
Prove for attack and a start	DAD	Ramp-function generator	RO3

RA2

RB11

Current supplementary setpoint input *) Total loading per polarity: 50 mA

Ramp-function generator output

Ramp-function generator Fault Fault acknowledge Contact for fault acknowledge button

RO4

RO6

RO5/RO6

F2 F D (C) Ш < 2 > 1 £ 2-ph. 230V 10% 50/60 Hz or 2-ph. 400V 10% 50/60 Hz Σ U 1 C (D) ¥ V 2 A 3 P24 M1 N24 ADA21-5117a U 2 ŧ M1 / M2 M2 < 3 > * 41-A2 A2-A3 0 400V: 230V M Ust RA5 **B**9 Σ <u>بة</u> ب list L2 (N) B7/ ¥ ü B8 Ξ M X 514 (X95) 26 RA8 ł NOK JOK u 125 RA9 Lü* < 2 > NOK NOK 4 RB8 24 **RA10** P24 + JOK 32 JOK u C 23 **RA11** - ** D5 D6 Stö NOOL 1006 • < 8 > V59 H Main contactor (auxiliary contact) ± Fault memory Button for clearing fault memory 1 Main contactor ON (command) 1 D4 Main contactor (main contact) (switches main contactor on) ഗ ž Provides controller enable main contactor RB9 **RA14** F Stö C94 с (coil) A2 A3 **RB13** S19 D3D2 PA **RA15** < 6 × contactor 21 On command Off delay, R80 х Р Σ N10 A6 • Main 1 **RA12** GM < _ < < ^ ^ 8 0 > < 9 > **2418** < 2 > < 2 > Rf **RA13** C 22 C2 C3 > 18 Stö R à * 80 z 17 0 RA S Σ HS < 9 > **RA16** < 1 > 16 20 bu ~ 12 RA1 ž RB3 5 7 R ~ / . 10 19 2 6 Σ ¥ P10 N10 ~ Σ 8 Σ P24 X23: -X23: (0 13 3 -X23:12

(-)+

(ʊ |

(-)+

Block diagrams / Terminal assignment

Fig. 1/11 6RA22 SIMOREG K converter in a circulating-current-free inverse-parallel connection using two fully controlled single-phase bridge circuits (B2)A(B2)C for four-quadrant drives

Fig. 1/12 6RA22 SIMOREG K converter in fully-controlled, three-phase bridge connection B6C for single-quadrant drives

Fig. 1/13 6RA22 SIMOREG K converter in circulating-current-free inverse-parallel connection using two fully-controlled three-phase bridge circuits (B6)A(B6)C for four-quadrant drives

	Function	Terminal	Туре	Connection values	Comments
Connections of 6RA2	2 SIMOREG K converters in	(B2)A(B2)C c	onnection for	four-quadrant drives	
Power section	L1 L2	U1 V1	Input Input	2-ph. 400 V or 2-ph. 230 V	See technical data
	+ (-) - (+)	C (D) D (C)	Output Output	Max. 260 V or 150 V	
	Relay contact	X95.1/2	Output	250 V/5 A AC Max. switching capacity 1100 VA	For switching-in the main contactor
Power supply	L1 L2	U2 V2	Input Input	2-ph. 400 V or 2-ph. 230 V	For 400 V solder jumper A2/A1 closed, for 230 V solder jumper A2-A3 closed See technical data
	M M P N P24	X23.7 X23.9 X23.10 X23.11 X23.8	Output Output Output Output Output	0 V (M potential) 0 V (M potential) +15 V - 15 V +24 V	Total loading per polarity: 50 mA
	M P10 N10	X23.6 X23.12 X23.13	Output Output Output	0 V (ref. potential) +10 V/10 mA - 10 V/10 mA	Connection for speed setpoint potentiometer M/P10 (with ramp-function generator): direction I; M/N10 (with ramp-function generator): direction II.
Speed controller	Setpoint	X23.4	Input	+10 to -10 V/20 k Ω	Jumper C2-C3 closed: ramp-function generator setpoint input
	Actual value	X23.2 X23.1 X23.3 X23.3	Input Input Input Input	0 V (ref. potential) 80 to 220 V/78 kΩ 30 to 90 V/31 kΩ 10 to 30 V/13 kΩ	Bridge resistor R20
Other	ON command	X23.20	Input	+20 to +30 V	Reference potential M: jumpers B2-B3 and
functions	(power contactor ON)	X23.20	Input	0 to +24 V	A8-A7 closed, terminal 5 open Reference potential N24: jumpers B2-B3 and
		X23.20	Input	+20 to +30 V	Reference potential provided externally via terminal 5: jumper B2-B1 closed (floating control signal)
	Controller enable (checkback for power contactor ON)	X23.19	Input	See terminal X23.20	See terminal X23.20
	Free optocoupler	X23.21	Input	See terminal X23.20	See terminal X23.20
	Free optocoupler	X23.22	Input	See terminal X23.20	See terminal X23.20
	Floating control signal	X23.5	Input	0 to -30 V	Externally provided reference potential for floating control signal at terminals X23.19, X23.20, X23.21 and X23.22: jumper B2-B1 closed
	Limit monitor	X23.14	Output	+24 V/50 mA	Jumpers A2-A1 and A5-A4 closed: speed actual value interrogation Jumpers A2-A3 and A5-A6 closed: current actual value interrogation
	Free input terminals	X23.23 X23.24 X23.25 X23.26	Input Input Input Input	$\begin{array}{l} 2 \times 100 \ k\Omega / 10 \ nF \\ 2 \times \ 10 \ k\Omega / 10 \ nF \\ 2 \times \ 10 \ k\Omega / 10 \ nF \\ 2 \times \ 10 \ k\Omega / 10 \ nF \end{array}$	Matrix board RA11 Matrix board RA10 Matrix board RA9 Matrix board RA8
	Free output terminals	X23.15 X23.16 X23.17 X23.18	Output Output Output Output	$\begin{array}{rrrr} 2 \times & 50 \ \Omega / 47 \ \text{nF} \\ 2 \times & 50 \ \Omega / 47 \ \text{nF} \\ 2 \times & 50 \ \Omega / 47 \ \text{nF} \\ 2 \times & 50 \ \Omega / 47 \ \text{nF} \end{array}$	Matrix board RA17 Matrix board RA16 Matrix board RA7 Matrix board RA6

	Function	Terminal	Туре	Connection values	Comments
Connections of 6RA2	2 SIMOREG K converters in	n B6C connect	ion for single-	quadrant drives	
Power section	L1 L2 L3 +	U1 V1 W1 C1	Input Input Input Output	3-ph. 400 V 3-ph. 400 V 3-ph. 400 V DC 485 V DC 485 V	See technical data
	Relay contact	X5.1/2	Output	AC 250 V/5 A	For switching the main contactor
Field rectifier	L1 L2 +	U2 V2 C2	Input Input Output	2-ph. 400 V 2-ph. 400 V DC 340 V	See technical data See technical data
	-	D2	Output	DC 340 V	
Power supply	L1 L2 L3	U3 V3 W3	Input Input Input	3-ph. 400 V 3-ph. 400 V 3-ph. 400 V	See technical data
	M P N P24	X1.7 X1.10 X1.11 X1.8/16	Output Output Output Output	0 V (M potential) +15 V/50 mA - 15 V/50 mA +24 V/50 mA	Total loading per polarity: 50 mA
	M P10 N10	X1.6 X1.12 X1.13	Output Output Output	0 V (ref. potential) +10 V/10 mA - 10 V/10 mA	Connection for speed setpoint potentiometer
Speed controller	Setpoint	X1.4 X1.4 X1.9 X1.9	Input Input Input Output	0 to +10 V/200 kΩ 0 to -10 V/ 20 kΩ 0 to -10 V/100 kΩ 0 to -10 V	Jumper A5-A4 closed: ramp-function generator setpoint input Jumper A5-A6 closed: speed controller setpoint input Jumper A8-A9 closed: summing amplifier input (supplementary current setpoint) Jumper A7-A8 closed; ramp-function generator output
	Actual value	X1.2 X1.1 X1.3 X1.5	Input Input Input Input	0 V (ref. potential) 80 to 220 V/78 kΩ 30 to 90 V/31 kΩ 0 to +10 V	Jumper A2-A3 closed: speed controller actual value input (connection only for speed actual value sensing by means of tacho-generator)
	limiting	X1.19	input	0 t0 + 10 V/33 K22	+ supplementary current setpoint
Current controller	Setpoint	X1.18	Input	0 to +10 V/100 nF, 56 Ω	Jumper C1-C2 closed: current setpoint from speed controller C2-C3 closed: external current setpoint
Other functions	On/Off command	X1.21	Input	+20 to +30 V	Switching command, main contactor On
	Controller enable	X1.20	Input	+20 to +30 V	Prerequisite, terminal X1.21 = H signal
	Power supply	X1.8	Output	+24 V across 100 Ω	Exclusively for supply to terminals
	Limit monitor	X1.14	Output	+24 V/50 mA	Switch loads with respect to P24, because terminal X1.14 switches to M
	Wiper of potentiometer R157 Free connection of potentiometer R157	X1.15 X1.17	Input Input	±10 V	Supplementary input for speed controller or $(I \times R)$ compensation
	Selector input	X1.22	Input	±10 V	On matrix board A14 for free use
Fan	Supply	X6.3 X6.4	Input Input	2-ph. 230 V 2-ph. 230 V	Fan connection for units ≥ 240 A
	Temperature switch	X6.1 X6.2	Output Output	Floating relay contact	Opens at overtemperature

	Function	Terminal	Туре	Connection values	Comments
Connections of 6RA2	2 SIMOREG K converters in	(B6)A(B6)C c	onnection for	four-quadrant drives	
Power section	L1 L2 L3	U1 V1 W1	Input Input Input	3-ph. 400 V 3-ph. 400 V 3-ph. 400 V	See technical data
	+ (-) - (+)	C (D) D(C)	Output Output	DC 420 V DC 420 V	
	Relay contact	X5.1/2	Output	AC 250 V/5 A	For switching the main contactor
Power supply	L1 L2 L3	U3 V3 W3	Input Input Input	3-ph. 400 V 3-ph. 400 V 3-ph. 400 V	See technical data
	M	X1.7 X1.9	Output Output	0 V (M potential) 0 V (M potential)	See technical data
	P N	X1.10 X1.11	Output Output	+15 V/50 mA - 15 V/50 mA	
	M P10 N10	X1.6 X1.12 X1.13	Output Output Output	0 V (ref. potential) +10 V/10 mA - 10 V/10 mA	Connection for speed setpoint potentiometer
Field rectifier	L1 L2	U2 V2	Input Input	2-ph. 400 V 2-ph. 400 V	See technical data
	+ -	C2 D2	Output Output	DC 340 V DC 340 V	See technical data
Speed controller	Setpoint	X1.4	Input	±10 V/20 kΩ	Setpoint for ramp-function generator (2 to 30 s)
	Actual value	X1.2 X1.1 X1.3 X1.3	Input Input Input Input	0 V (ref. potential) 80 to 220 V/78 kΩ 30 to 90 V/31 kΩ 10 to 30 V	Bridge R32
Other functions	On command (switches	X1.20	Input	+20 to +30 V	Reference potential M:
	main contactor On)	V1 00	lassut	0 to . 241/	jumpers C1-C2 and C4-C5 closed
		X1.20	input	0 t0 +24 V	jumpers C1-C2 and C5-C6 closed
		X1.20	Input	+20 to +30 V	External reference potential via terminal 5: jumpers C2-C3 and C4-C5 closed
	Controller enable	X1.19	Input	As for terminal 20	As for terminal X1.20
	Free optocoupler	X1.21	Input	As for terminal 20	As for terminal X1.20
	Free optocoupler	X1.22	Input	As for terminal 20	As for terminal X1.20
	P24	X1.8	Output	+24 V (across 100 Ω)	Only for supplying terminals X1.19 to X1.22
	Floating control signal (N*)	X1.5	Input	0 to -30 V (ext.)	External reference potential at terminal X1.5
	Limit monitor	X1.14	Output	+24 V/50 mA	
	Free input terminals Free input/output terminals	X1.23 X1.24 X1.25 X1.26 X1.27 X1.28	Input Input Input Input/Output Input/Output	$\begin{array}{c} \pm 10 \text{V/2} \times 100 \text{k} \Omega / 10 \text{nF} \\ \pm 10 \text{V/2} \times 10 \text{k} \Omega / 10 \text{nF} \\ \pm 10 \text{V/2} \times 10 \text{k} \Omega / 10 \text{nF} \\ \pm 10 \text{V/2} \times 10 \text{k} \Omega / 10 \text{nF} \end{array}$	Matrix board RA12 Matrix board RA11 Matrix board RA8 Matrix board RA7 Matrix board R116 Matrix board RK16
	Free output terminals	X1.15 X1.16 X1.17 X1.18	Output Output Output Output	2 x 50 Ω/47 nF 2 x 50 Ω/47 nF 2 x 50 Ω/47 nF 2 x 50 Ω/47 nF	Matrix board RA10 Matrix board RA9 Matrix board RA6 Matrix board RA5
Fan	Supply	X6.3 X6.4	Input Input	2-ph. 230 V 2-ph. 230 V	Fan connection for units ≥240 A
	Temperature switch	X6.1 X6.2	Output Output	Floating relay contact	Opens at overtemperature

Ordering and engineering data

Rated supply	Rated direct	Rated DC	Rated output at		SIMOREG K converter		Fuses
voltage	voltage		2-ph. 400 V	2-ph. 230 V	Order No.	Type designation accord. to DIN 41 792	
v	v	А	kW	kW			Order No.
SIMOREG K co	onverters in B2H	K connection fo	r single-quadra	nt drives			
Units without e	nclosure (for mou	inting in 6DM900	5 subracks)				
2-ph. 400 or 2-ph. 230	315 or 180	5 12 22 40	1.6 3.8 6.9 12.6	0.9 2.2 4.0 7.2	6RA2203-8DD21-0 6RA2211-8DD21-0 6RA2216-8DD21-0 6RA2221-8DD21-0	E315/ 5 MRE-GDE8-0 E315/12 MRE-GDE8-0 E315/22 MRE-GDE8-0 E315/40 MRE-GDE8-0	5SD4 20 5SD4 20 3NE8 015 3NE8 017
Units with encl	Units with enclosure (for individual mounting)						
2-ph. 400 or 2-ph. 230	315 or 180	5 12 22 40	1.6 3.8 6.9 12.6	0.9 2.2 4.0 7.2	6RA2203-8DD21-1 6RA2211-8DD21-1 6RA2216-8DD21-1 6RA2221-8DD21-1	E315/ 5 MRE-GDE8-1 E315/12 MRE-GDE8-1 E315/22 MRE-GDE8-1 E315/40 MRE-GDE8-1	5SD4 20 5SD4 20 3NE8 015 3NE8 017

Rated	Rated	Rated	Rated output	SIMOREG K converter	Fuses	
voltage	voltage	DC		Order No.		
V	v	А	kW			Order No.
SIMOREG K co	onverters in B6C	connection for s	ingle-guadrant drives			
3-ph. 400	485	35 50 70 110	17 24 34 53	6RA2220-8DS31 6RA2223-8DS31 6RA2226-8DS31 6RA2230-8DS31	D485/ 35 MRE-GDE8 S31 D485/ 50 MRE-GDE8 S31 D485/ 70 MRE-GDE8 S31 D485/110 MRE-GDE8 S31	3NE8 003 3NE8 017 3NE8 020 3NE8 021
		130 160 240 350 500	63 78 116 170 242	6RA2232-8DS31 6RA2233-8DS31 6RA2276-8DS31 6RA2280-8DS31 6RA2283-8DS31	D485/130 MRE-GDE8 S31 D485/160 MRE-GDE8 S31 D485/240 MRE-GDEF S31 D485/350 MRE-GDEF S31 D485/500 MRE-GDEF S31	3NE8 023 3NE8 024 3NE4 327-0B 3NE4 333-0B 3NE4 334-0B

Ordering and engineering data

Rated	Rated	Rated	Rated outp	out	SIMOREG K convert	er	Fuses	
voltage	voltage	20	2-ph. 400 V	2-ph. 230 V	Order No.	Type designation accord. to DIN 41 792	Line fuses	DC fuses
v	v	А	kW	kW			Order No.	Order No.
SIMOREG K	SIMOREG K converters in (B2)A(B2)C connection for four-guadrant drives							
Units without	t enclosure (for r	mounting in 6DN	19005 subracks)					
2-ph. 400 or 2-ph. 230	260 or 150	5 12 22 40	1.3 3.1 5.7 10.4	0.75 1.8 3.3 6	6RA2203-8DK27-0 6RA2211-8DK27-0 6RA2216-8DK27-0 6RA2221-8DK27-0	E260/ 5 MREQ-GDG8-0 E260/10 MREQ-GDG8-0 E260/22 MREQ-GDG8-0 E260/40 MREQ-GDG8-0	5SD4 20 5SD4 20 3NE8 015 3NE8 017	5SD4 20 5SD4 20 3NE8 015 3NE8 017
Units with en	closure (for all m	nounting)						
2-ph. 400 or 2-ph. 230	260 or 150	5 12 22 40	1.3 3.1 5.7 10.4	0.75 1.8 3.3 6	6RA2203-8DK27-1 6RA2211-8DK27-1 6RA2216-8DK27-1 6RA2221-8DK27-1	E260/ 5 MREQ-GDG8-1 E260/10 MREQ-GDG8-1 E260/22 MREQ-GDG8-1 E260/40 MREQ-GDG8-1	5SD4 20 5SD4 20 3NE8 015 3NE8 017	5SD4 20 5SD4 20 3NE8 015 3NE8 017

Rated	Rated	Rated	Rated output	SIMOREG K converter	Fuses		
voltage	voltage	DC		Order No.	Type designation accord. to DIN 41 792	Line fuses	DC fuses
v	V	Α	kW			Order No.	Order No.
SIMOREG K c	onverters in (B6)	A(B6)C connect	ion for four-quadrant driv	ves			
3-ph. 400	420	35 50 70 110	14.7 21 29 46	6RA2220-8DV71 6RA2223-8DV71 6RA2226-8DV71 6RA2230-8DV71	D420/ 35 MREQ-GDG8 V71 D420/ 50 MREQ-GDG8 V71 D420/ 70 MREQ-GDG8 V71 D420/110 MREQ-GDG8 V71	3NE8 003 3NE8 017 3NE8 020 3NE8 021	3NE8 003 3NE8 017 3NE8 020 3NE8 021
		130 160 240 350 500	55 67 100 147 210	6RA2232-8DV71 6RA2233-8DV71 6RA2276-8DV71 6RA2280-8DV71 6RA2283-8DV71	D420/130 MREQ-GDG8 V71 D420/160 MREQ-GDG8 V71 D420/240 MREQ-GDGF8 V71 D420/350 MREQ-GDGF8 V71 D420/350 MREQ-GDGF8 V71	3NE8 022 3NE8 024 3NE4 327-0B 3NE4 333-0B 3NE4 334-0B	3NE8 024 3NE8 024 3NE4 327-0B 3NE4 333-0B 3NE4 334-0B

Fuses for the integrated field power supply

For 6RA22..-8DK27-. converters, an external field supply must be provided (see Part 2 of this catalog).

For 6RA22..-8DD21-. converters, fuses or a circuit breaker must be provided for the line protection of the field supply.

Type 5SD4 20 fuses are specified for the field supply of 6RA22..-8DS31 and 6RA22..-8DV71 converters.

Commutating reactors for the armature circuit

The required commutating reactor can be designed for the rated current of the motor and can be found in Catalog DA 93.1.

Converter type	Order No. of the German/English operating manual
Other documentation for	6RA22 SIMOREG K converters in analog technology
6RA228DD21	6RX1220-0DD 74
6RA228DS31	6RX1220-0SD 74
6RA228DV71	6RX1220-0VD 74
Converter type	Order No. of the French operating manual

Other documentation for 6RA	22 SIMOREG K converters in analog technology
6RA228DD21	6RX1220-0.D 77
6RA228DK27	Letter according
6RA228DS31	to converter type
6RA228DV71	

Fig. 1/14

Fig. 1/15

Fig. 1/16

Converter	Dimension
Order No.	mm
Converters in B2HZ c	onnection for single-quadrant drives, with enclosure
6RA2203-8DD21-1 6RA2211-8DD21-1 6RA2216-8DD21-1 6RA2221-8DD21-1	86 86 121 152
Converters in (B2)A(B	2)C connection for four-quadrant drives, with enclosure
6RA2203-8DK27-1 6RA2211-8DK27-1 6RA2216-8DK27-1 6RA2216-8DK27-1 6RA2221-8DK27-1	137 137 152 182

Converter	Dimension	Dimension	Dimension C
Order No.	mm	mm	mm
Converters in B6C conn	ection for si	ingle-quadra	ant drives, with enclosure
6RA2220-8DS31 6RA2223-8DS31 6RA2226-8DS31 6RA2230-8DS31 6RA2232-8DS31	310 310 310 310 310 310	290 290 290 290 290	195 195 227 317 320
6RA2233-8DS31 6RA2276-8DS31 6RA2280-8DS31 6RA2283-8DS31	310 400 400 400	290 373 373 373	320 390 390 390
Converters in (B6)A(B6)(connection	for four-qua	drant drives with enclosure
6RA2220-8DV71 6RA2223-8DV71 6RA2226-8DV71 6RA2230-8DV71 6RA2230-8DV71 6RA2232-8DV71	310 310 310 310 310 310	290 290 290 290 290 290	190 190 222 315 345
6RA2233-8DV71 6RA2276-8DV71 6RA2280-8DV71 6RA2283-8DV71	310 400 400 400	290 373 373 373	345 390 390 390

 The specifications apply to units without mounted supplementar technology board, but they do include the required clearance between two mounted units.

Supplementary boards / Accessories

Fig. 1/17 6RA22 SIMOREG K converter with mounted supplementary technology board, 6RA2200-8DD00 field supply unit and 6DM9005 subrack as an assembly kit

Accessories for 6RA22 SIMOREG K converters

	Order No.	Comments	
Subrack as assembly kit	6DM9005	Subrack with 186 basic grid dimensions (1 BGD = 2.54 mm) for mounting 6RA22 SIMOREG K converters without enclosure. External dimensions (W x H x D): 537 mm x 336 mm x 300 mm	
Uncontrolled field rectifier alternative to the field supply unit	6RA8222-8AA0	Supply voltage: Field voltage: Field current: Fuse:	max. 2-ph. 50/60 Hz 400 V +10% 340 V DC 4 A max. (up to 16 A when mounted on metal) 5SD4 20

Z 702 supplementary board for winder drives Order No. 6RA8222-1BB0

Application

The Z 702 supplementary board is intended for use with SIMOREG compact units for controlled drives for axle-driven winders and unwinders.

Winders and unwinders always require that the material web have a specific tension. It is usually desirable for this tension, also known as "web tension", to be adjustable and to have the required characteristics over the entire winding range.

Winder drives can either be operated with "direct tension control" (sensing of the tension actual value via tension transducer or via compensator roll) or with "indirect tension control."

Both modes are possible with the Z 702 supplementary board.

A prerequisite is that the web speed, the so-called "web velocity v" is always specified by the driven machine. The web velocity is either constant (e.g. for paper machines) or variable during acceleration and deceleration (e.g. for calenders).

For winder operation, the winding roll speed must be reduced according to the increasing roll diameter; for unwinding operation, in contrast, the speed must be increased in accordance with the descreasing roll diameter.

The set web tension must be maintained in both cases.

Supplementary boards / Accessories

Z 702 supplementary board for winder drives Order No. 6RA8222-1BB0

Description

The Z 702 supplementary board mainly contains the following functions

- Higher-level controller (tension, position, current)
- Diameter computer
- Speed controller

This is therefore a variable-speed winder drive. The following setpoints act on the speed controller:

- 1. Master reference voltage V_L determines the basic speed.
- 2. Signal *n* x *d* from the diameter computer takes into account the diameter change of the winder roll.
- 3. Signal ΔV_{set} from the higher-level controller ensures that the web tension is maintained.

4. If necessary, a supplementary signal from a maneuvering potentiometer to run the winder motor when threading the material web.

A DC tachometer coupled to the winder motor supplies the speed actual value. The winder motor speed is adapted over the complete winding range

lia -	Full roll)
(1.0	Empty roll	J

only via the armature voltage, at constant motor field. Thus a variable field supply is not needed. Direct or indirect tension control can be provided for the higher-level controller. For direct tension control, the tension actual value is sensed via a tension transducer, and the tension setpoint is adjusted with a potentiometer.

If, however, a compensator roll is provided, the controller operates as a position controller. The material web tension is governed solely by the weight of the compensator roll or its load.

For indirect tension control, the armature current is a measure of the tension in the material web. The higherlevel controller has the function of an additional current controller.

For more detailed information, please refer to the Operating Instructions, Order No. E31910-J5035-X-A1.

Mounting and connection

The Z 702 has the same width as the basic unit electronics board but only half its height. It is mounted onto the basic unit with spacers. The board is powered via ribbon cable from the basic unit (X2). A terminal strip is available for external connection (X1).

The mounting components, spacers and ribbon cables are supplied together with the board.

Fig. 1/18 Example: Simplified block diagram of an unwinder with indirect tension control

Z 707 supplementary board for EMF control Order No. 6RA8222-1GB0

Application

A drive can be operated with EMF control in conjunction with the Z 707 supplementary board.

This is often necessary if, for reasons of space for example, a tachometer cannot be mounted on the machine and the requirements for stability and accuracy of the closed-loop control allow EMF-controlled operation.

Described as an example is a DC door drive for which this board was originally designed.

Description

The Z 707 supplementary board mainly consists of:

a) Setpoint generator (V*)

b) Two-quadrant voltage converter

For more detailed information, please refer to the Operating Instructions, Order No. BA- 6RA82 22-1GB0.

Mounting and connection

The Z 707 supplementary board is mounted on the SIMOREG K unit electronics board with spacers and is connected to it with a ribbon cable.

Power is supplied to the voltage converter via two additional leads from the power board to the supplementary board (terminal points 13 - 15). A terminal strip is available for other connections. The mounting components, spacers and ribbon cable are supplied together with the board.

1/24

Z 708 analog, higher-level PID controller Order No. 6RA8222-1HB0

Application

The board is suitable for general higher-level PID control. The P gain, I component and D component of the PID controller are adjusted separately. The controller output is fed directly, or after multiplication by a master voltage V_{master} (e.g. web velocity), to a summing circuit. There, if required, it can be added to a speed setpoint n_{master} and fed to the setpoint output n_{set}^* of the board (e.g. as speed setpoint for the SIMOREG unit).

Typical applications: position, tension and pressure control.

For more detailed information, please refer to the Operating Instructions, Order No. V18-6RA82 22-1HB00.

Mounting

The Z 708 has the same width as the basic unit electronics board but only half the height.

The supplementary board is mounted directly onto the SIMOREG K converter by means of spacers. The SIMOREG K basic converter provides the board with the supply voltage (± 15 V and ± 24 V) via a ribbon cable. Supplementary wiring:

Setpoint output X2.12 or X2.13 of the supplementary board must be connected to the setpoint input terminal X_.4 of the basic unit. The setpoint input is situated on the basic unit electronics board.

The mounting components, spacers and ribbon cable are supplied together with the board.

Z 714 technology board for wire-drawing machines Order No. 6RA8222-1PB0

Application

The Z 714 supplementary board is a technology board for use with SIMOREG K converters of the 6RA22 series in analog technology.

The board is equipped with the I-P-D-position controller functions including limiting, controlled braking and standstill monitoring.

It is used for position-controlled winder drives (e.g. wire-drawing machines) in conjunction with the basic unit. The position controller has the function of maintaining the wire tension at the specified setpoint during winding. It involves position control. The transducer connected to the compensator roll (e.g. a magnetoresistive potentiometer) should be adjusted so that at the set position (e.g. midpoint of the compensator roll) 0 V is output for the controller. A position deviation results in a proportional value with sign.

For more detailed information, please refer to the Operating Instructions, Order No. BA-6RA8222-1PB0.

Mounting

The Z 714 has the same width as the basic unit electronics board but only 2/3 of its height.

The board is mounted on the basic unit by means of spacers. The board can either be powered via ribbon cable (X1) or via the terminal strip (X2). The terminal strip (X2) is also provided for external connections.

The mounting components, spacers and ribbon cable are supplied together with the board.

Fig. 1/21

Z 716 universal supplementary board Order No. 6RA8222-1RB0

Application

The Z 716 supplementary board is intended as a universal supplementary board for all 6RA22 SIMOREG K converters, to allow improved adaptation of the basic units to simple technological processes. The supplementary board mainly contains the following functions:

- Setpoint cascade with six inputs
- Six limit monitors
- Output for external speed display
- Four switchable amplifier circuits
- Freely available potentiometers

For more detailed information, please refer to the Operating Instructions, Order No. EMA-B1-6RA8222-1RB0.

Mounting

The board is mounted on the electronics board by means of spacers. The signal connection is achieved by ribbon cable X1 to the basic unit. A terminal strip is provided for external connections.

The mounting components, spacers and ribbon cable are supplied with the board.

Z 722 axle winder and unwinder Order No. 6RA8222-2BB0

Application

The Z 722 supplementary board is suitable, in conjunction with a SIMOREG K unit, for controlling the material web tension of an axle winder motor.

The board is suitable for both winding and unwinding operations.

With the appropriate circuitry, the board can be used for the following control tasks:

- Direct tension control
- Position control with compensator roll
- Indirect tension control
- Winding hardness control

Description

The Z 722 supplementary board mainly contains the following functions

• Higher-level controller (tension, position, current)

- Diameter computer
- Diameter-dependent field weakening
- Speed controller

This is therefore a variablespeed winder drive. The following setpoints act on the speed controller:

- 1. Master reference voltage V_L determines the basic speed.
- 2. Signal *n x d* from the diameter computer takes into account the diameter change of the winder roll.
- 3. Signal ΔV_{set} from the higher-level controller ensures that the web tension is maintained.
- If necessary, a supplementary signal from a maneuvering potentiometer to run the winder motor when threading the material web.

A DC tachometer coupled to the winder motor supplies the speed actual value.

The winder motor speed is adapted over the complete winding range

Full roll i.e. = Empty roll

Direct or indirect tension control can be provided for the higher-level controller. For direct tension control, the tension actual value is sensed via a tension transducer, and the tension setpoint is adjusted with a potentiometer.

If, however, a compensator roll is provided, the controller operates as a position controller. The material web tension is governed solely by the weight of the compensator roll or its load. For indirect tension control, the armature current is a measure of the tension in the material web. The higherlevel controller has the function of an additional current controller.

Please refer to the Operating Instructions, Order No. E31910-T9008-X-A2 for more detailed information.

Mounting

The Z 722 has the same width as the basic unit electronics board but only half the height.

The supplementary board is mounted on the basic unit by means of spacers. The board is powered via a ribbon cable. A terminal strip is available for external connections.

The mounting components, spacers and ribbon cable are supplied with the board.

Fig. 1/23

Example: Simplified block diagram of a winder drive (direct tension control with tension transducer)

- /2 F3 /3 U3 /3 F1
 - F 33 Minireg
 - U 315 simple field supply unit
 - F 10 Minireg
 - U 318 cut-in field weakening control

dependent

SIMOREG K Field Supply Units F 33 Minireg

Design and mode of operation · Block diagrams Technical data · Dimension drawings

F 33 Minireg Order No. 6DM1001-0WB00-2

Application

The "F 33 Minireg" board is a current-controlled thyristor power unit with half-controlled single-phase bridge circuit, which is used for the field supply of DC shuntwound motors.

Power section

The power section consists of a module containing two thyristors, two diodes in half-controlled single-phase bridge circuit and an additional free-wheeling diode. An aluminum support plate serves simultaneously as heatsink for the module.

Current actual value sensing

The current actual value is measured on the DC side of the power section with a chopper converter. With this measuring method, the "zero diode current" of the thyristor circuit is also sensed.

Current controller

When the F 33 Minireg Version 2 is used for the field supply of DC shunt-wound motors, the current controller has the task of keeping the current through the field winding constant, independently of temperature rise and supply voltage fluctuations, according to a specified setpoint.

The setpoint which, for example, corresponds to the rated field, can be set with potentiometer R120.

Monitoring

A limit monitor is provided for monitoring the load current by comparing the current actual value to a selectable reference value.

Terminal	Function	Terminal strip codes	Connection value	Comments
L1 L2 (N)	Rated supply voltage		2-ph. 230 or 400 V 50/60 Hz	±10%
L+ L-	Rated DC voltage		DC 190 V or DC 325 V	
X1.1 X1.2 X1.3	Contact terminals of relay K2	NO contact CO contact NC contact	Contact rating AC 230 V, 2.5	Changeover contact
X1.4	Controller enable	Rf	+24 V ≙ enable	
X1.5	P24	P24		For controller enable
X1.6 X1.7	Actual value output	i	0 to -10 V	e.g. for measuring purposes
X1.8	External supplementary setpoint	i*	0 to ±10 V	
X1.9	Reference potential M (0 V)	Μ	0 V	Ð
X1.10	Supply from ext. setpoint potentiometer	P10	+10 V	10 k Ω potentiometer
X1.13	Reference potential M (0 V)	Μ	0 V	
X1.14	Тад	G		
X3.1 X3.2 X3.3 X3.4 X3.5 X3.6	Connector for connecting cable to supplementary board	P N M24 i _e * ie _{act}		
÷	Protective conductor terminal			

Rated supply voltage (50/60 Hz) V	Rated DC voltage V	Rated DC current ¹ A	Order No.	Fuse
2-ph. 230	190	8	6DM1001-0WB00-2	5SD4 20
		15	6DM1001-0WB00-2	5SD4 20
		22	6DM1001-0WB00-2	5SD4 40
2-ph. 400	325	15	6DM1001-0WB00-2	5SD4 20
		22	6DM1001_0W/B00_2	5SD4 40

Please refer to Catalog DA 93.1 for the required commutating reactors.

Mounting

Subrack 6DM9005 is intended for mounting a total of seven F 33 Miniregs. The F 33 Minireg can also be mounted on a vertical surface by means of four spacers, e.g. in a cubicle.

Fig. 2/2 Support plate, overall height approx. 72 mm

 The maximum field current of the unit is 22 A. The intermediate values are governed by the commutating rectors and fuses.

Technical data · Dimension drawings

U 315 simple field supply unit Order No. 6RA2200-8DD00

Function	Terminal	Connection values
Connection for power section supply and electronics power • Supply phase L1 • Supply phase L2 or N	1 2	Rated supply voltages; 2-ph. 50/60 Hz 400 V +10 – 15% or 2-ph. 50/60 Hz 230 V +10 – 15% (see also terminals 14/15/16) Fuse 2 x 5SD420
Unit ground connection	5	
Control voltage connection for field weakening • Ground potential • Ext. control voltage E	6 7	0 V 0 to +10 V (only field weakening possible)
Field current monitoring (floating)	9 10	1 NO contact: 230 V/2.5 A AC max. Contact opens at a field current <80 mA
Field winding connection • Connection C2(+) • Connection D2(-)	11 12	Rated DC voltage: 325 V DC at a rated supply voltage of 2-ph. 400 V; 190 V DC at a rated supply voltage of 2-ph. 230 V; max. field current: 3 A
Adaptation to rated supply voltages of 2-ph. 400 V or 2-ph. AC 230 V (external jumpers)	14 15 16	Jumper 15 - 16 for a rated supply voltage of 2-ph. 400 V; jumper 15-14 for a rated supply voltage of 2-ph. 230 V

Fig. 2/3

Fig. 2/4

Fig. 2/5

Fig. 2/6

F 10 Minireg Order No. 6RA8222-8PA0

Function

Rated supply voltage	L1 L2	2-ph. 50/60 Hz 400 V	Tolerance: ±15% Fuses (2 required): 5SD4 20
Rated DC voltage	C2 D2	325 V DC 10 A max.	
Monitoring relay connection	1 2	Contact rating 230 V AC, 2.5 A	Contact closed as long as current flows
Controller enable	4	Via internal P or SIMATIC	
Reference potential	5	Μ	
External analog setpoint	6	0 to +10 V	e.g. from U318 field weakening unit
Measured field current	7	0 to -10 V max. 10 mA	For measuring purposes
Reference potential	8	Μ	
Internal P	9	12V Short-circuit protected	For controller enable

Terminal

Connection

values

Comments

The F 10 Minireg field supply unit is suitable for the supply of controlled fields of up to 10 A.

Please consult Catalog DA 93.1 for the required commutating reactor.

Siemens DA 21.2 · 2001

SIMOREG K Field Supply Units U 318 cut-in field weakening control

Block diagrams Technical data · Dimension drawings

U 318 cut-in field weakening control Order No. 6RA8222-8QA0

Application

The U 318 module is used for cut-in field weakening control in conjunction with, for example, the F 33 Minireg or F 10 Minireg.

The unit contains the power supply, voltage transformer for sensing the armature voltage with isolation, and cut-in controller. The level of the cut-in voltage is preset via potentiometer V*A; the value can be weakened via a switchable input with potentiometer A. Potentiometer V_A serves for adaptation to the armature voltage. The field current setpoint is made available at two different outputs, one from 0 to +10 V and the other from 0 to -10 V, both rated at up to 5 mA max. The maximum or minimum field limit can be set on the potentiometers: Max. and Min.

Mounting

The U 318 cut-in field weakening control can be snapped onto a standard mounting rail to DIN 46 277 (35 mm DIN rail).

The unit can also be mounted directly on a vertical surface using two screwed fixtures to DIN 46 121 and DIN 43 660, e.g. in a cubicle.

For more detailed information, please refer to the Operating Instructions BA-6RA8222-8QA0-X0076.

Fig. 2/7

Tec	hni	cal	d	ata
100		vu		

Power supply: Rated supply voltage Permissible tolerance Current consumption	2-ph. 50/60 Hz, 230/400 V +10%/-15% 50 mA
Voltage transformer: Rated input voltage	10 V (terminals 9, 10) 225 V (terminals 9, 11) 450 V (terminals 9, 13) 600 V (terminals 9, 15)
Input current	≤7 mA
Output voltage	±10 V (5 mA)
Linear overdrive capability 1)	1.1 · V _{EN}
Max. overdrive capability ²) 10 V input 225 V input 450 V input 600 V input	Continuous 12 V 270 V 540 V 720 V
Setpoint output	0 to +10 V (terminal 25) 5 mA 0 to -10 V (terminal 26) 5 mA

Fig. 2/8

 Increase of input signal at which the converter still operates linearly (error as in the rated range). 2) Increase of input signal at which the converter is still not damaged.

2/4

Supplementary Units for Drives

Image: Comparison of the comparison o

2	U 307 digital motorized potentiometer
	U 308 A frequency-voltage converter
5	U 309 adaptor module 4 to 20 mA for the U 307 digital motorized potentiometer
	U 312 voltage converter
	U 313 current-voltage / voltage-current converter
	External power supply for Z 7 supplementary boards

Supplementary Units for Drives U 307 motorized potentiometer

Design and mode of operation · Technical data

U 307 digital motorized potentiometer Order No. 6RA8222-8BA0

Application

The U 307 digital motorized potentiometer is used as a setpoint generator for closed-loop control equipment. It can serve for the following applications:

- Remote changing of setpoints with separately adjustable ramp-up and ramp-down times
- Ramp-function generator (slope limiter) for analog voltages 0 to -10 V or 0 to +10 V
- Diameter tracking and storage for winder functions (e.g. in conjunction with SIMOREG supplementary boards such as Z 702)

The U 307 operates completely wear-free because a microprocessor is used.

Reliable storage of the output variable is ensured, even when the supply voltage is switched off for any length of time.

The U 307 has its own 230 V power supply.

Mode of operation

Ramp-up and ramp-down times are reproducibly adjustable with quartz accuracy using a thumbwheel switch over the range 1 to 999 s (corresponding to 16:40 min.).

MANUAL mode (MAN switch setting)

The output voltage is changed via the UP and DOWN control inputs according to the set ramp-up or ramp-down time *t*-UP and *t*-DOWN.

AUTOMATIC mode (AUTO switch setting)

The output voltage follows an analog reference setpoint along a ramp according to the preset ramp-up/rampdown time. The reference setpoint can be preset as a voltage signal (0 to -10 V or 0 to +10 V) or as a current signal (0 to 20 mA). Additionally, a potentiometer can serve as the setpoint generator. The U 307 provides a highly accurate +10 V reference voltage for the purpose.

Control inputs

All control inputs are SIMATIC compatible and isolated via optocouplers.

Reset facilities

- The output value can be reset to 0 V at any time via the RESET control input.
- The nonvolatile storage can be canceled by inserting an optional terminal jumper between terminals 27 and 28. When the 230 V supply voltage is switched on, 0 V then appears at the output and not the value in the nonvolatile memory.

External ramp-up time changeover

The external ramp-up time changeover can be activated by inserting a jumper between terminals 29 and 30. In this case, the ramp-up or ramp-down time can be changed during operation with external switch t-DN/ t-UP. At the t-DN setting, the time selected at the t-DOWN thumbwheel is valid, and at the *t*-UP setting the time selected at the t-UP thumbwheel is valid. Whether the motorized potentiometer is ramping-up or ramping-down is insignificant.

For example, the "fast/slow acceleration" function can be implemented in this way.

External reference voltage

An external reference voltage can be applied to terminal 19 for special applications, thus allowing the maximum output voltage to be varied.

Mounting

The U 307 can be snapped onto a standard mounting rail to DIN 46 277. The unit can also be mounted directly on a vertical surface (e.g. in a cubicle) by means of two screw fixtures to DIN 46 121 and DIN 43 660.

A clearance of approx. 15 mm on all sides must be maintained without fail, on account of the temperature rise in the unit.

For more detailed information, please refer to the Operating Instructions, Order No. E31930-T7001-X-A3-7400.

Technical data

Design, mounting	Terminal housing for mounting on standard 35 mm DIN rail
Dimensions	H x W x D = 75 mm x 99.7 mm x 110 mm (see page 4/4)
Rated supply voltage Power supply	2-ph. 50/60 Hz 230 V +10%/-15% Current consumption 50 mA
External control signals	SIMATIC-compatible 24 V signal LOW = 0 to 4.0 V HIGH = 13 to 35 V
Resolution (step change) of the output voltage	2.5 mV
Nonvolatile memory	NOVRAM*-IC, storage time > 10 years; backup battery is not necessary
Ambient temperature	0 to +45 °C

* NOVRAM = Nonvolatile random access memory

Supplementary Units for Drives U 307 motorized potentiometer

Block diagram

Supplementary Units for Drives U 308 A frequency-voltage converter

Design and mode of operation · Block diagrams Technical data · Dimension drawings

U 308 A frequency-voltage converter for pulse generator evaluation Order No. 6RA8222-8CA1

Application

The U 308 A frequency-voltage converter converts a signal, which is present as a pulse train (frequency), to a direct voltage which is proportional to the pulse frequency.

The direction of rotation can be evaluated by connecting two channels, electrically offset by 90 °, so that the DC output voltage is also available with sign.

On account of its 100 kHz input frequency, the converter is also suitable for fast and dynamic drives. The *f/V* converter and the preceding rotary pulse encoder are powered by an internal power supply (230 V supply).

The basic function of the U 308 A module can be seen in the figure.

The input signals of channels I and II are available at two decoupled outputs.

Pex ERR SW Mex 000000000000000 0 \oslash 7 8 2 3 4 5 6 9 10 11 12 13 14 15 f/V converter 6RA8222-8CA1 SIEMENS U 308 A S1 S2 tgl V R E RESET F Ο Ο 00 П F A-A+ 000 0 0 - 230 V -17 18 19 20 21 22 23 24 25 26 27 28 29 30 16 00000000000 $\bigcirc \bigcirc \bigcirc \bigcirc$ 0 0 K1 K2 +n GND P15 F02 GND GND F01 GND ±n ±nt ACV +nt ACV

Fia. 3/3

Front view of the U 308 A f/V converter

Technical data

Supply Rated supply voltage	2 ph 50 Hz 220 \/
nated supply voltage	+10%-15%
Current consumption	50 mA
<u>Rotary encoder supply</u> Voltage Rating	+15 V with respect to M (0 V) 80 mA
Input level for actual value channels	
High	12 to 30 V
Low	-0.6 to 3.5 V
Outputs Positive output Bipolar output	+10V5mA ±10V5mA
Decoupled inverted frequency outputs	Low 0.2 V High 15 V
f/V converter (N38) Input frequency range of the DC output voltage	0 to 100 kHz (Freq. in) 0 to 9.9 V ±0.05 V
Temperature sensitivity of DC output voltage Nonlinearity Short-circuit protection	1 mV/°C 0.01% referred to max. output voltage Continuous with respect to M (0 V)
Permissible ambient temperature	0 to 45 °C

For more detailed information, please refer to the Operating Instructions, Order No. BA-6RA8222-8CA1.

Mounting

The U 308 A frequency-voltage converter can be snapped onto a standard mounting rail to DIN 46 277 (35 mm DIN rail).

The unit can also be mounted directly on a vertical surface, e.g. in a cabinet, by means of two screw fixtures to DIN 46 121 and DIN 436 60. Dimensions: HxWxD = 75 mmx99.7 mmx 110 mm (see also dimension drawing).

Fig. 3/4 Block diagram

Supplementary Units for Drives U 309 adaptor module

Design and mode of operation · Block diagrams Technical data · Dimension drawings

U 309 adaptor module 4 to 20 mA for U 307 digital motorized potentiometer Order No. 6RA8222-8DA0

Application

The U 309 adaptor module allows the U 307 digital motorized potentiometer to be operated also in the automatic mode with a reference setpoint of 4 to 20 mA (impressed current with live zero).

Circuit description

The circuit diagram is shown in the figure. A voltage of exactly 2.50 V is obtained via a voltage divider (R4-R7) from the +10.00 V reference voltage available at terminal 17 of the motorized potentiometer. This voltage is applied to input IN- of the motorized potentiometer (terminal 20) and compensates the 4 mA live zero current. A load resistance of exactly 634Ω (R1 + R2 + R3) is inserted between terminals 21 and 23 of the motorized potentiometer; the 4 to 20 mA signal source is also connected at that point. The total signal excursion of 16 mA results in a voltage drop of exactly +10.00 V at motorized potentiometer input IN+. The input impedance of IN+ of 44 k Ω was taken into account for the design rating of the resistors.

Fig. 3/6

Technical data

Dimensions Weight	H x W x D = 75 mm x 22.5 mm x 100 mm approx. 0.15 kg
Max. zero point error when supplied (without fine adjustment) at $I_{IN} = 4 \text{ mA}$	OUT+, OUT-=0V±12mV
Max. gain error at I_{IN} = 20 mA	$OUT_{+} = +10 V \pm 110 mV$ $OUT_{-} = -10 V \pm 110 mV$
Input impedance of the current input (between terminals 32 and 31)	634 Ω

For more detailed information, please refer to the Operating Instructions, Order No. E319/An/U 309 BA.

Mounting

The U 309 adaptor module can be snapped onto a standard mounting rail to DIN 46 277 (35 mm DIN rail). It is not intended for screw fixing.

Supplementary Units for Drives U 312 voltage converter

Design and mode of operation · Block diagrams Technical data · Dimension drawings

U 312 voltage converter Order No. 6RA8222-8GA0

Application

Mounting

The U 312 direct voltage converter is used for sensing the voltage actual value for voltage and EMF closed-loop controls.

It converts the DC input voltage to a floating, proportional voltage with sign of 0 to ± 10 V.

The U312 is directly screwed onto the cabinet mounting plate.

The components of the converter are mounted on a PC board and are encapsulated in a vibration-proof molded-plastic enclosure.

If necessary, the transmitter can be installed in the 6KA9902 shielded housing.

Power supply Rated supply voltage Permissible tolerance Current consumption	2-ph. 50/60 Hz 230/400 V +10% to-15% ≤10 mA
Input Rated input voltage	10 V (terminals 9, 10) 225 V (terminals 8, 10) 450 V (terminals 7, 10) 600 V (terminals 6, 10)
Rated input current Linear overdrive capability ¹) Max. overdrive capability ²) 10 V input 225 V input 450 V input 600 V input	≤7 mA 1.1 · <i>U</i> _{EN} Continuous 12 V 270 V 540 V 720 V

Fig. 3/9

<u>Output</u> Rated output voltage Max. output current	±10 V 5 mA
Conversion error (proportional error) Zero point error Short-circuit protection No-load protection Clock frequency	≤ 1% ≤ 0.2% Continuous Continuous 4 kHz
of the 4 kHz clock frequency Test voltage to DIN VDE 0160	≤0.5%
Input with respect to output Output with respect to supply voltage Permissible ambient temperature	4 kV (rms) 2.5 kV (rms)
in operation for storage	0 to 45 ° C -50 to +85 ° C

For more detailed information, please refer to the Operating Instructions, Order No. BA-6RA8222-8GA0.

Fig. 3/11

Increase of input signal at which the converter still operates (error as in the rated range).

Increase of input signal at which the converter is still not damaged.

Siemens DA 21.2 · 2001

3/6

Supplementary Units for Drives Adaptor module U 313

Design and mode of operation · Block diagrams Technical data

U 313 current-voltage / voltage-current converter Order No. 6RA8222-8HA0

Description

The U 313 adaptor module contains two independent circuit branches:

- 1. Current/voltage conversion (0/4 to 20 mA -> 0 to 10 V)
- 2. Voltage/current conversion (0 to 10 V -> 0/4 to 20 mA)

The current range 0 to 20 mA or 4 to 20 mA (live zero) can be selected with a switch on the front plate.

The inputs and outputs as well as power supply are referred to unit ground (non-floating).

Fig. 3/12

Technical data

Design, mounting	Terminal housing for mounting on 35 mm standard rail to DIN 46 227 and DIN EN 50 022
Terminals	Screw terminals, max. conductor cross-section 2.5 mm ²
Dimensions	$H \times W \times D = 75 \text{ mm} \times 22.5 \text{ mm} \times 100 \text{ mm}$
Supply voltage	+24 V (+20 to +30 V) external
Current consumption	45 mA max. (if both branches are in operation)
Storage and transportation temperature	e-50 to +85 ° C
Ambient temperature	0 to +45 ° C
Humidity rating	F

Circuit branch: current-voltage cor	iversion
Input resistance	167.3 Ω (209.3 Ω for live zero operation)
Input current	0 to 20 mA (4 to 20 mA for live zero operation)
Output resistance	112 Ω
Output voltage	0 to +10 V; 0 to -10 V (+11.5 V max. or -11,5 V max.)
Max. output current	2 mA (\triangleq 5 k Ω load resistance)
Short-circuit protection	Continuous
Accuracy	± 25 mV at 10 V (± 30 mV for live zero)
Zero point error	±10 mV (±20 mV for live zero)
Circuit branch: voltage-current cor	nversion
Input resistance	10 MΩ
Input voltage	0 to +10 V; 0 to -10 V
Output resistance	≤0.1 Ω
Output current	0 to 20 mA (4 to 20 mA for live zero)
Permissible load resistance	0 to 700 Ω
Accuracy	±70 μA at 20 mA (±80 μA for live zero)
Zero point error	±20 μA (±30 μA for live zero)

For more detailed information, please refer to the Operating Instructions, Order No. E319-6RA8222-8HA0.

Supplementary Units for Drives External power supply

Design and mode of operation \cdot Technical data Dimension drawings

External power supply for Z 7.. supplementary boards Order No. 6RA8222-1WB0

Application

Design

The 6RA8222-1WB0 unit acts as the power supply and mechanical support for Z 7. supplementary technology boards with order number 6RA8222-1.. or -2.. which are not installed in a SIMOREG K analog converter from which they are powered. These supplementary boards can therefore also be operated in conjunction with other drive control devices which have not been prepared for the installation of such boards. The power supply consists of a power supply unit board with the same dimensions as the Z 7. supplementary boards, and is mounted on a bracket with spacer bolts. The supplementary board to be powered is mounted, in turn, on the power supply board with spacer bolts. The mounting hardware required is provided with the power supply.

The power supply is designed as standard for connection to three-phase 400 V $\pm 10\%$ 50/60 Hz. It provides all the ± 10 V, ± 15 V and

±24 V DC voltages required to operate a Z 7. supplementary board. It does not support boards which require floating AC voltages. The Z 7. supplementary boards have a non-detachable ribbon cable for the supply of power. The free end of this cable must be inserted into socket X4 on the power supply bo-ard. All supply voltages produced are also available at the plug-in terminal strip X2 of the power supply board. This therefore provides the supply for setpoint potentiometers, actual value sensors, etc.. The maximum permissible loading of individual

voltages must be observed according to the technical data table.

One inverting and one non-inverting operational amplifier, the inputs and outputs of which are routed to terminals strip X2, are also provided for optional applications.

Availability of the +15 V and -15 V voltages is indicated by an LED in each case.

All DC voltage outputs of the power supply are short-circuit protected.

Terminals

Terminal X1.1 X1.3 X1.5	Function Input supply	Connection values 3-ph. 400 V ±10% 50/60 Hz	Comments Input
X2.1	N10	-10 V/0.01 A	Output
X2.2	Μ	0 V	Reference potential
X2.3	P10	+10 V/0.01 A	Output
X2.4	N15	-15 V/0.1 A	Output
X2.5	Μ	0 V	Reference potential
X2.6	P15	+15 V/0.1 A	Output
X2.7	N24	-24 V/0.1 A	Output
X2.8	Μ	0 V	Reference potential
X2.9	P24	+24 V/0.3 A	Output
X2.10	In A-	0 to ± 10 V; 33 k Ω	Input, amplifier A (inverting)
X2.11	Out A	0 to ±10 V; 10 mA	Output, amplifier A
X2.12	In B+	0 to ± 10 V; > 1 M Ω	Input, amplifier B (non-inverting)
X2.13	Out B	0 to ±10 V; 10 mA	Output, amplifier B
X3	÷	PE	Protective conductor

 Technical data

 Ambient temperature in operation
 0 to 45 ° C

 Storage temperature
 -30 to +85 ° C

 Humidity rating DIN 40 040/SN 26 556
 F

 Degree of protection DIN 40 050/IEC 144
 IP00

 Dimensions W x H x D
 270 mm x 155 mm x 80 mm

Weight approx. 1.6 kg For further information, please refer to the Operating Instruc-

tions, Order No. BA-6RA8222-1WB0.

Mounting

The power supply is mounted on an L-shaped bracket. The wide side of this bracket can be snapped onto a 35 mm DIN rail. Each arm of the bracket also has four mounting holes of 5.5 mm diameter, allowing the unit to be screwed onto the mounting plate. If the unit is to be screwed on with the wide side of the bracket, the two retaining clips for DIN rail mounting should first be removed.

Fundamentals of EMC

Installation of drives with EMC (installation notes)

Components

Data on supply harmonics of converters in fully controlled, three-phase bridge circuit B6C and (B6)A(B6)C

Installation notes for drives with Electromagnetic Compatibility (EMC)

Fundamentals of EMC

What is EMC?

EMC stands for "electromagnetic compatibility"; it describes the capability of a device to operate satisfactorily in the electromagnetic environment, without causing electromagnetic interference which is unacceptable for other devices in this environment. In other words, the different devices must not interfere with each other.

Emitted interference and interference immunity

EMC depends on two characteristics of the devices involved: emitted interference and interference immunity. Electrical devices can be interference sources (transmitters) and/or interference sinks (receivers).

Electromagnetic compatibility exists when the interference sources do not affect functioning of the interference sinks.

A device can be simultaneously an interference source and sink. For example, the power section of a converter can be considered as an interference source, and the control section as an interference sink.

Limit values

Product standard EN 61 800-3 (IEC 61 800-3, VDE 160 Part 100) covers electrical drives. According to this product standard, not all EMC measures are essential for industrial supply systems; a solution must be defined which is adapted to the actual environment. Thus it may be economically more advantageous to increase the interference immunity of a sensitive device rather than implement interference suppression on the converter. The choice of solution, therefore, also depends on economic factors.

To some extent, adherence to EN 55 011 is required. This defines the limit values for emitted interference in industry and in residential buildings. Conducted interference at the supply connection is measured under standardized conditions as a radio interference voltage, electromagnetically emitted interference as interference emission. The standard defines limit values "A1" and "B1" which apply to radio interference voltage over the range 150 kHz to 30 MHz, and to interference emission over the range 30 MHz to 2 GHz. Since the SIMOREG K converters are used in industry, limit value "A1" applies. To achieve limit value "A1," the SIMOREG K units must be provided with external RFI filters.

Interference immunity describes the behavior of a device under the influence of electromagnetic interference. Standard EN 50 082-2 governs the requirements and assessment criteria for the behavior of the devices in industry. This standard is met by the converters listed in the following chapter.

Application in industry

In industry, the interference immunity of the devices must be very high, whilst lower demands are made on emitted interference.

The SIMOREG K converters are components of an electrical drive, as are contactors and switches. Skilled personnel must integrate them in a drive system comprising at least the converter, motor cables and the motor. Commutating reactors and fuses are usually also needed. Proper installation thus also determines whether or not a limit value will be met. To limit the emitted interference according to limit value "A1,"at least the corresponding RFI filter and the commutating reactor are also needed in addition to the converter. Without RFI filter, the emitted interference of the SIMOREG K converters exceeds limit value A1 of EN 55 011.

If the drive is part of an installation, it need not initially meet requirements relating to emitted interference. However, the EMC legislation requires that the entire installation be electromagnetically compatible with the environment.

If all the control components of the installation, such as automation equipment, exhibit industrial-grade interference immunity, there is no need for each drive to satisfy limit value "A1."

Ungrounded supply systems

In some branches of industry, unarounded supply systems (IT systems) are used to increase availability of the plant. In the event of a ground fault, there is no ground current and the plant can continue with production. In conjunction with RFI filters, however, there is a fault current in the event of a ground fault which can result in a shutdown of the drives or even the destruction of the RFI filter. The product standard therefore does not specify limit values for these systems. For economic reasons, interference suppression, if required, should be implemented on the grounded primary side of the supply transformer.

EMC planning

If two devices are electromagnetically incompatible, you can reduce the emitted interference of the source or increase the interference immunity of the sink. Interfer-

ence sources are usually devices of power electronics with a high current consumption. To reduce their emitted interference, elaborate filters are required. Interference sinks are, in particular, control units and sensors including their evaluation circuitry. Enhancing the interference immunity of low-power devices is less involved. For economical reasons in industry, therefore, it is often more favorable to increase the interference immunity than to reduce emitted interference. To satisfy limit value class A1 of EN 55 011, for example, the radio interference voltage at the supply terminals must not exceed 79 dB (µV) between 150 and 500 kHz. and 73 dB (µV) (9 mV or 4.5 mV) between 500 kHZ and 30 MHz.

In industry, EMC of devices should be based on a judicious balance between emitted interference and interference immunity.

The least expensive suppression method is to separate the interference sources and sinks, provided that this is allowed for during the planning of a machine/plant. For each device used, the first question is whether it is a potential interference source or sink. Examples of interference sources in this context are converters and contactors. Examples of interference sinks are programmable controllers, encoders and sensors.

The components in the cabinet (interference sources and sinks) should be separated, if necessary with partition plates or by installing them in metal housings. Shown in Fig. 5/1 is a possible arrangement of components in the cabinet.

Installation notes for drives with Electromagnetic Compatibility (EMC)

Installation of drives with EMC (installation notes)

General

Since the drives are operated in very different environments, and additional electrical components (controllers, switched-mode power supplies, etc.) can differ greatly with regard to interference immunity and emitted interference, each installation guideline can only be a sensible compromise. In individual cases, therefore, after examination, deviation from the EMC rules is permissible.

To ensure electromagnetic compatibility (EMC) in your cabinets in an electrically harsh environment, and to be able to meet the legal standards, the following EMC rules should be observed during design and installation.

Rules 1 to 10 are generally valid. Rules 11 to 15 are necessary to meet the emitted interference standards.

Rules for electromagnetically compatible installation

Rule 1

All metal parts of the cabinet must be joined to each other with good electrical contact (not paintwork on paint-work!). Contact or toothed washers should be used where necessary. The cabinet door should be connected to the cabinet via ground straps (at top, middle and bottom) with as short a path a possible.

Rule 2

Contactors, relays, solenoid valves, electromagnetic hours-run counters, etc. in the cabinet, and if necessary in adjacent cabinets, should be provided with suppression combinations, such as RC networks, varistors, diodes. The circuitry must be implemented directly at the particular coil.

Rule 3

Signal lines ¹) should be routed into the cabinet from one level if possible.

Rule 4

Unshielded conductors of the same circuit (outgoing and return conductors) should be twisted together if possible, i.e. the surface between outgoing and return conductors should be kept as small as possible to prevent the creating of unnecessary frame antennas.

Rule 5

Spare cores should be connected to the cabinet ground ²). This achieves additional shielding.

Rule 6

Unnecessary line lengths should be avoided. Coupling capacitances and inductances are thus kept low.

Rule 7

In general, crosstalk is reduced when conductors are placed close to the cabinet ground. Wiring should therefore not be placed in free space in the cabinet but, where possible, routed closely along the cabinet housing or installation plates. This also applies to spare cables.

Rule 8

Signal lines and power cables should be laid separately from each other (to avoid coupling paths). A minimum clearance 20 cm is desirable.

If segregation between sensor and motor cables is not possible, the sensor cable should be decoupled by a partition plate or by installing it in a metal conduit. The partition plate or metal conduit should be grounded at several points.

Rule 9

The shields of digital signal cables should have largearea good electrical grounding at each end (source and destination). In the event of poor equipotential bonding between the shield connections, an additional equalizing conductor of at least 10 mm² should be laid in parallel with the shield to reduce the shield current. In general, shields may be connected to the cabinet housing (ground) at several points. Even outside the cabinet, the shields may be connected in several places.

Foil shields are not satisfactory. Compared to braid shields, their shielding effect is inferior by a factor of at least 5

Rule 10

With good equipotential bonding, the shields of analog signal lines may be grounded at both ends (with large-area good electrical contact). Good equipotential bonding can be assumed if all metal parts make good contact and the electronic components involved are powered from the same power supply.

Single-ended shield grounding prevents low-frequency, capacitive interference pickup such as 50 Hz hum. The shield connection should be made in the cabinet; a sheath wire may be used to connect the shield.

<u>Rule 11</u>

Positioning the RFI filter in the vicinity of the suspected interference source. The filter should be mounted with its surface on the cabinet housing, mounting plate, etc.. Input and output leads should be separated.

<u>Rule 12</u>

The use of RFI filters is mandatory for meeting limit value class A1. Additional loads should be connected ahead of the filter (supply system side).

The need to install an additional line filter depends on the controller in use and on the type of wiring of the rest of the cabinet.

<u>Rule 13</u>

With a regulated field current supply, a commutating reactor is needed in the field circuit.

Rule 14

A commutating reactor is needed in the armature circuit of the converter.

Rule 15

With SIMOREG drives, the motor cables may be unshielded. The supply cable must have a clearance of at least 20 cm from the motor cables (field, armature). A partition plate should be used if necessary.

- Signal lines are defined as: Digital signal line: lines for pulse generators Serial interfaces, e.g. PROFIBUS-DP or analog signal line (e.g. ±10 V setpoint line).
- The definition of ground, in general, is all metallically conductive parts which can be connected to a protective conductor, e.g. cabinet housing, motor housing, foundation earth, etc.

Installation notes for drives with Electromagnetic Compatibility (EMC)

Cabinet arrangement and shielding

The cabinet arrangement of Fig. 4/1 is intended to draw the user's attention to the EMC-critical parts. The example does not necessarily show all possible cabinet components or arrangements.

Details affecting interference immunity/emitted interference of the cabinet and which do not clearly appear in the block diagram, are described in Figs. 4/2 and 4/3.

Fig. 4/1 Example of cabinet arrangement with a SIMOREG K

Fig. 4/2 Shielding with routing into the cabinet

Arrangement of RFI filters and commutating reactors:

Shown in the following section is the arrangement of RFI filters and commutating reactors for SIMOREG K converters. The order of installation of reactors and filters must be followed. The choice of fuses for semiconductor protection is based on the operating instructions of the converters.

Fig. 4/3 Shielding in the cabinet

Components

Components for the converters

The arrangement of radio interference suppression filters and commutating reactors for SIMOREG K converters is shown in the Figures below. The reactors and filters must be installed in the specified order.

Caution

When filters are used, commutating reactors are always needed between the filter and the input of the unit to decouple the RC circuit.

SIMOREG K 6RA22..-8DD21-.:

5

U2 V2

D2

Field

arrangement of reactors and filters

Supply voltage

4

U1 V1

Armature and power supply

M

D1

C2 C1

For selection of the commutating reactors, see page 4/6. For selection of the radio interference suppression filters, see page 4/7.

SIMOREG K 6RA22..-8DK27-.:

arrangement of reactors and filters

SIMOREG K 6RA22 for three-phase systems: arrangement of reactors and filters

Fig. 4/4

U 315 field supply unit: 6RA2200-8DD00: arrangement of reactors and filters

Fig. 4/7

Fig. 4/5 F 10 Minireg field supply unit: 6RA8222-8PA0:

SIMOREG

arrangement of reactors and filters

Fig. 4/8

it: F 33 Minireg field supply unit: 6DM1001-0WB00-2: d filters arrangement of reactors and filters

Fig. 4/6

Fig. 4/9

- The commutating reactor in the armature circuit is designed for the rated motor current in the armature. The supply current is equal to the DC multiplied by 0.82.
- O The filter for the armature circuit is designed for the rated motor current in the armature. The supply current is equal to the DC multiplied by 0.82.
- On the commutating reactor in the armature circuit is designed for the rated motor current in the armature.
- 4 The filter for the armature circuit is designed for the rated motor current in the armature.
- 5 The commutating reactor is designed for the rated motor current in the field.
- **6** The filter is designed for the rated motor current in the field.

Supply voltage

4

Rat cur

I_{Ln}

Components

Line commutating reactors

Line commutating reactors

A converter must always be connected to the supply via a commutating inductance. This must be at least 4 % u_k ! The commutating inductance can be implemented as a converter transformer or, with appropriate mains voltage, as a commutating reactor.

A supply can be regarded as "constant" when the output ratio $P_s/S_k \le 0.01$. Even in the case of a constant supply, the commutating reactor must have a u_k of at least 4 %!

For high-power converters, the supply reactance, i.e. the total short-circuit power of the supply must be taken into account, which also results in a larger u_k value. The recommended ratio of supply short-circuit power to apparent drive power is > 33:1.

The commutating reactors are dimensioned for the rated motor current in the armature or field circuit.

Operation on a 50 Hz and 60 Hz supply

The rated currents I_{Ln} specified in the Table for the reactors apply for operation at a supply frequency f = 50 Hz. Operation of the reactors at a supply frequency f = 60 Hz is permissible. In this case, the permissible rated current I_{Ln} is reduced to 90 %.

 $I_{Ln} (60 \text{ Hz}) = 0.9 \cdot I_{Ln} (50 \text{ Hz})$

At the same time, the voltage drop ΔU increases by 8 %.

For further details, see Catalog PD 30.

red AC rent	Max. AC current	Permissible continuous DC current	Referred voltage drop $u_{\rm D}$ of the reactor at $I_{\rm Lmax}$ and $U_{\rm N}$
	I _{Lmax} A	I _{dn} ¹) A	Order No.: 400 V
	ation was atoms		

Single-phase commutating reactors

'Ln = 'Lmax With'	muucuve ioau		
8	8	9,8	4EM48 07-1CB
10	10	12,3	4EM49 11-7CB
11.2	11.2	13.7	4EM49 11-8CB
12.5	12.5	15.3	4EM49 12-0CB
14	14	17.2	4EM49 12-1CB
15	15	18.4	4EM50 00-2CB
18	18	22	4EM50 05-6CB
20	20	24.5	4EM50 05-7CB
22.4	22.4	27.4	4EM50 05-8CB
24	24	29.4	4EM51 00-2CB
28	28	34	4EM61 00-2CB
31.5	31.5	39	4EM61 00-3CB
35.5	35.5	43	4EM52 12-8CB
40	40	49	4EM52 00-1CB

Three-phase commutating reactors

$I_{Ln} = 0.8 \cdot I_{Lmax}$ with inductive load, 3-ph. AC 50 Hz

16 19	20	19.6	4EP36 01-3DS
10	22.4	22	4EF3001-4D3
20	25	24.5	4EP3601-5D5
22.4	28	27.4	-
25	31.5	31	4EP37 01-5DS
28	35.5	34	4EP37 01-6DS
31.5	40	39	4EP37 01-7DS
35.5	45	43	4FP37 01-8DS
00.0	50	10	
40	50	49	4EP38 00-2DS
45	56	55	4EP38 01-6DS
50	63	61	4EP38 00-3DS
56	71	69	4EP39 01-4DS
63	80	77	4EP39 00-2DS
71	91	87	4EP40 02-7DS
80	100	98	4EP40 00-3DS
91	112	112	4EP40 02-8DS
100	105	100	
100	125	123	4EP40 03-0DS
112	140	137	4EU2422-6AA00-0A
125	160	153	4EU2422-7AA00-0A
140	180	172	4EU25 22-2BA00-0A
160	200	196	4EU25 22-3BA00-0A
180	224	221	4EU25 22-4BA00-0A
200	250	245	4EU25 22-5BA00-0A
224	280	275	4EU27 22-5BA00-0A
250	315	306	/FLI27 22-68 A00-0A
200	255	242	
200	400	343 206	4EU2722 0DA00 0A
010 0FF	400	300	4EU2/22-0DAUU-UA
300	450	435	4EU3022-1BA00-0A
400	500	490	4EU30 22-2BA00-0A
450	560	551	4EU30 22-3BA00-0A
500	630	613	4EU3022-4BA00-0A
560	710	686	4EU3622-0CA00-0A
	2.10	889	

Radio interference suppression filters

SIMOREG applications comply with the EMC product standard EN 61 800-3 for electrical drives provided that the rules for electromagnetically compatible installation of the converters in the plant are observed.

However, the EMC legislation requires that the entire installation be electromagnetically compatible with the environment.

If the system is to comply with the "A1" degree of radio interference suppression according to EN 55011, RI suppression filters must be installed in addition to commutating reactors. In conjunction with the commutating reactors, the RI suppression filters reduce the radio interference voltages that arise due to the converters. RI suppression filters can only be installed in grounded-neutral systems.

The RI suppression filters generate discharge currents. In accordance with DIN VDE 0160, a PE connection with a cross-sectional area of 10 mm² is necessary. To ensure the best possible action of the filter it must be mounted with the converter on a common metal plate.

For converters with a threephase system, the minimum rated current of the filter is equal

to the output DC current multiplied by 0.82. For units with a two-phase system (field supply and electronics power supply), only two phases are connected to the three-phase RI suppression filter. The line current is equal to the field DC current (plus 1 A for the electronics power supply).

List of suggested RI suppression filters from EPCOS

 *) In place of *, the identification number for the design type must be inserted: 	Rated current Radio interference suppression filters	Radio interference suppression filters	Terminal cross-section mm ²	Weight approx.	Dimensions H x W x D
0 = 480 V 2 = 530 V	А	Туре	Holes for M	kg	mm x mm x mm
*) In place of ** the identifica-	8	B84143-G8-R11*	4 mm ²	1.3	80 x 230 x 50
tion number for the design	20	B84143-G20-R11*	4 mm ²	1.3	80 x 230 x 50
type must be inserted:	36	B84143-G36-R11*	6 mm ²	2.8	150 x 280 x 60
20 = 500 V	50	B84143-G50-R11*	16 mm ²	3.3	150 x 60 x 330
21 = 760 V	66	B84143-G66-R11*	25 mm ²	4.4	150 x 330 x 80
24 = 690 V For further information about filters, visit www4.ad.siemens.de.	90	B84143-G90-R11*	25 mm ²	4.9	150 x 330 x 80
	120	B84143-G120-R11*	50 mm ²	7.5	200 x 380 x 90
	150	B84143-G150-R11*	50 mm ²	8.0	200 x 380 x 90
Please enter 65 67 129	220	B84143-G220-R11*	95 mm ²	11.5	220 x 430 x 110
under "Article number".	150	B84143-B150-S**	M10	13	140 x 310 x 170
	180	B84143-B180-S**	M10	13	140 x 310 x 170
	250	B84143-B250-S**	M10	15	115 x 360 x 190
	320	B84143-B320-S**	M10	21	115 x 360 x 260
	400	B84143-B400-S**	M10	21	115 x 360 x 260
	600	B84143-B600-S**	M10	22	115 x 410 x 260

List of suggested RI suppression filters from Siemens

Rated current Radio interference suppression filters A	Radio interference suppression filters Type	Terminal cross-section	Ground bolt	Weight approx. kg	Dimensions H x W x D mm x mm x mm
12	6SE7021-0ES87-0FB1	4	M6	2.5	215 x 90 x 81
18	6SE7021-8ES87-0FB1	4	M6	2.5	215 x 90 x 81
36	6SE7023-4ES87-0FB1	16	M6	4	231 x 101 x 86
80	6SE7027-2ES87-0FB1	50	M10	9	308 x 141 x 141
120	6SE7031-2ES87-0FA1	50	M10	10	348 x 171 x 141
180	6SE7031-8ES87-0FA0	95	M10	10	404 x 171 x 141
320	6SE7033-2ES87-0FA1	Terminal link	M10 x 30	21	300 x 260 x 116
600	6SE7036-0ES87-0FA1	Terminal link	M10 x 30	22	350 x 260 x 116

Technical Data

Rated supply voltage	3-ph. AC 380-460 V (±15%)
Rated frequency	50/60 Hz (±6%)
Operating temperature	0 to +40°C
Degree of protection	IP 20 (EN 60529); IP 00 from 500 A

Supply harmonics

Data on supply harmonics of converters in fully controlled, three-phase bridge connections B6C and (B6)A(B6)C

Converters for medium power are mainly designed in fully controlled three-phase bridge connection. Shown in the following is an example of harmonics of a typical installed configuration for two delay angles ($\alpha = 20^{\circ}$ and $\alpha = 60^{\circ}$). The values have been adopted from a previous publication: "Oberschwingungen im netzseitigen Strom sechspulsiger netzgeführter Stromrichter" (Harmonics in the supply current of six-pulse line-commutated converters) by H. Arremann and G. Möltgen, Siemens Forschungs- und Entwicklungsberichte, Vol. 7 (1978) No. 2, © Springer-Verlag 1978.

a) $\alpha = 20^{\circ}$

Fundamental factor g = 0.962

ν	<i>hv</i> // ₁	ν	/v/ / ₁
5	0.235	29	0.018
7	0.100	31	0.016
11	0.083	35	0.011
13	0.056	37	0.010
17	0.046	41	0.006
19	0.035	43	0.006
23	0.028	47	0.003
25	0.028	49	0.003

b) $\alpha = 60^{\circ}$

Fundamental factor g = 0.953

ν	<i>h</i> v/1 ₁	ν	<i>lv/l</i> 1
5	0.283	29	0.026
7	0.050	31	0.019
11	0.089	35	0.020
13	0.038	37	0.016
17	0.050	41	0.016
19	0.029	43	0.013
23	0.034	47	0.013
25	0.023	49	0.011

The fundamental current I_1 as the reference quantity is calculated with the following formula:

 $I_1 = g \times 0.817 \times I_d$

where $I_d = DC$ of the examined operating point and g = fundamental factor (see above).

The harmonic currents calculated from the above tables apply **only** to

a) Short-circuit power $S_{\rm K}$ at the connection point of the converter:

 $S_{\rm K} = \frac{U_{\rm V0}^2}{{\rm X}_{\rm N}} \text{ (VA)}$

where

$$X_{\rm N} = X_{\rm K} - X_{\rm D} = 0.03536 \, \text{x} \, \frac{U_{\rm V0}}{I_{\rm d}} - 2\pi f_{\rm N} \, \text{x} \, L_{\rm D}(\Omega)$$
 and

- $\mathcal{U}_{V0}~$ No-load voltage at the connection point of the converter in V
- *I*d DC of the examined operating point in A
- $f_{\rm N}$ Line frequency in Hz
- L_{D} Inductance of the commutating choke in H

This is accompanied by formulae with which, depending on the operating data in the specific case, supply voltage (no-load voltage U_{V0}), line frequency f_N and DC I_d), the short-circuit power S_K and armature inductance L_a of the motor are determined, and to which the specified harmonic spectrum applies. If the actual system short-circuit power and/or the actual armature inductance deviate from the val-

b) Armature inductance L_a:

$$L_{\rm a} = 0.0488 \times \frac{U_{\rm V0}}{f_{\rm N} \times I_{\rm d}}$$
 (H)

If the actual values of short-circuit power S_K and/or armature inductance L_a differ from the values calculated using the above formulae, a separate calculation is necessary.

ues thus calculated, an indi-

vidual calculation is neces-

The given harmonic spec-

trum is attained when the

values calculated with the

short-circuit power S_K at the

connection point of the unit,

and the armature inductance

La of the motor coincide with

stallation. If the values differ,

a separate calculation of har-

the actual values of the in-

monics is necessary.

following formulae for

sarv

Example:

The given drive has the following data:

 $U_{\rm V0} = 400 \,\rm V$

 $I_{\rm d}$ = 150 A

 $f_{\rm N} = 50 \, {\rm Hz}$

 $L_{\rm D}$ = 0.169 mH (4EU2421-7AA10 with $I_{\rm L_{\rm D}}$ = 125 A)

where

$$X_{\rm N} = 0.03536 \times \frac{400}{150} - 2\pi \times 50 \times 0.169 \times 10^{-3} = 0.0412 \,\Omega$$

resulting in the following required short-circuit power of the system at the connection point of the converter:

$$S_{\rm K} = \frac{400^2}{0.0412} = 3.88 \,\rm{MVA}$$

and the following required armature inductance of the motor:

$$L_{\rm a} = 0.0488 \times \frac{400}{50 \times 150} = 2.0 \, \rm mH$$

The harmonic currents I_v (where $I_1 = g \times 0.817 \times I_d$ for delay angle $\alpha = 20^\circ$ and $\alpha = 60^\circ$) apply **only** to the values S_K and L_a thus calculated. If the values differ, a separate calculation is required.

When designing filters and reactor compensations, the harmonic values thus calculated can only serve as a basis if the calculated values for S_K and L_a coincide with the actual values of the drive. In all other cases a separate calculation must be made (especially when compensated machines are used, because of the very low armature inductance).

Appendix

A/2	Environment, resources and recycling
	Certificates
	Siemens companies and representatives inside Europe
A/5	Siemens companies and representatives outside Europe
	Information and ordering on the Internet and on CD-ROM
A/8	Customer support
	Conditions of sale and delivery, export regulations

SIMOREG K Chassis Converters 6RA22 Appendix

Environment, resources and recycling

Siemens AG has committed itself to protecting the environment and conserving valuable natural resources. This applies both to production and to the products we sell.

As early as the development phase, the possible impact of future products and systems on the environment is taken into consideration. Our aim is to prevent environmental pollution or, at least, reduce it to a minimum and, in doing so, look beyond existing regulations and legislation.

Environmental aspects of development

The use of dangerous substances (such as arsenic, asbestos, beryllium, cadmium, CFC, halogens and many others) has already been avoided in the development stage.

Easily dismantled joints have been designed and attention has been paid to increased uniformity of types and grades of materials.

Furthermore, recyclable materials have been given priority, or materials which can be disposed of without any problems.

Environmental aspects were an important criteria in selecting the supplied components.

Environmental aspects of manufacturing

The supplied components are mainly transported in reusable packaging. The packaging material itself is reusable, mainly comprising cardboard.

The manufacturing facility produces no emissions.

Materials for manufacturing purposes are identified in accordance with their recyclability. This applies, in particular, to components which contain unavoidable, hazardous materials. These components are installed or mounted in such a way that they can be easily separated, thus facilitating disposal in an environmentally-friendly manner. Wherever possible, recycled components are used.

Despatch

Environmentally-compatible packaging materials are used for shipping and storage. If possible we pack our products in reusable packaging.

Environmental aspects of disposal

We have already made preparations to enable the converters to be disposed of after use in accordance with the regulations governing the disposal of electronic equipment (not yet in force).

This catalog is printed on Chlorine-free bleached paper.

SIMOREG K Chassis Converters 6RA22 Appendix

Albania

BINDI sh. p. k Tirana

Armenia Representative of Siemens AG Yerevan

Austria

Siemens AG Österreich Vienna Bregenz Deutschlandsberg Eisenstadt Graz Innsbruck Innsbruck Klagenfurt Klosterneuburg Linz Salzburg St. Pölten Villach

Azerbaijan

Representative of SIMKO AS Baku

Belarus

Representative of Siemens AG Minsk

Belgium

Siemens S. A Brussels Antwerpen Boussu Colfontaine Dilsen-Stokkem Gent Haasrode Herentals Huizingen Liège Namur Oostkamp Zaventem

Bulgaria Siemens AG Representative in Bulgaria Sofia

Croatia

Cyprus GEVO Ltd Nicosia

Czech Republic

Trutnov

Denmark

Siemens A/S Ballerup Hedenstee Højbjerg Odense Skensved Tåstrup Vejle

Eire (Ireland)

Estonia

AS Siemens Tallinn

Finland Siemens **Osakeyhtiö** Espoo Helsinki France Siemens S. A. S Saint-Denis Saint-Denis Bihorel Caluire-et-Cuire Cesson Sévigné Dijon Haguenau La Garenne Colombes La-Suze-sur-Sarthe La-Suze-s Lesquin Les Ulis Lissess Lormont Marseille Mérignac Metz Montrouge Montrouge Molsheim Nanterre Nantes Nice Pantin Paris La Défense Paimo Reims Saint-Denis Saint-Quentin Strasbourg Toulouse Georgia Representative of Siemens AG Great Britain Siemens plc Bracknell Beeston Belfast Bellshill Birmingham Bristol Camberley Camberley Cambridge Chessington Christchurch Clevedon Congleton Crawley Cumbernauld East Kilbridge Fareham Fareham Glasgow Hemel Hempstead Hounslow Ilford Isle of Wight London Luton Manchester Manchester Milton Keynes Newcastle-upon-Tyne Oldham Oxford

Poole Purley Romsey Telford Wellingborough Wembley Greece

Siemens A. E. Athen, Amaroussio Acharnes Thessaloniki Vassiliko Evias

Hungary

Siemens Rt. Budapest Bicske Cegled Szombathely

Iceland Smith & Nordland HF Reykjavik

Italy Siemens S. p. A. Milano Bari Bologna Brescia Cagliari Casoria Cassina de Pecchi Fanglia Firenze Genova Napoli Padova Palermo Pescara Roma Torino Verona Latvia Siemens S/A Riga Lithuania Lietuvos ELTIKA Vilnius Klaipeda Luxembourg Siemens S. A. Luxembourg-Hamm Macedonia SITAI d.o.o. Skopje Malta J.R.D. SYSTEMS Ltd. Harun Moldavia Siemens s.r.l. Chisinau Netherlands Siemens Nederland N. V. Den Haag Alphen a/d Rijn Zoetermeer Norway Siemens A/S Oslo Fyllingsdalen Trondheim Poland Siemens Sp.z.o.o Warsaw Gdańsk-Wrzeszcz Katowice Kratów Poznań Wroclaw Portugal Siemens S. A. Lisbon Amadora Albufeira Carnaxide Coimbra Evora Evora Loures Matosinhos Codex Mem Martins Seixal

Romania

Bucharest

Siemens birou de consultații tehnice

Siemens GmbH Moskau Moscow Barnaul Jakutsk Yekaterinburg Irkutsk Yshewsk Kaluga Krasnodar Novosibirsk Perm St. Petersburg Tbilissi Tjumen

Russia

Tomsk Ufa Vladivostok

Slovak Republic

Siemens s.r.o. Bratislava Dolný Kubin Horná Streda Michalovce Nitra Nové Zámky Trnava

Slowenia Siemens d.o.o

Ljubljana Kranj Maribor

Spain Siemens S. A. Bilbao Cornellá de Llobregat Gijoñ La Coruña Las Palmas de Gran Canaria León Málaga Murcia Palma de Mallorca Santa Cruz de Tenerife Sevilla Tres Cantos (Madrid) Valencia Vallodolid Vigo Zaragoza

Sweden Siemens AB Upplands Väsby Göteborg

Haninge Jönköping Kista Malmö Solna Sundsvall

Switzerland

Siemens Schweiz AG Zürich Adliswil Basel Basel Bioggio Bronschhofen Dietikon-Fahrweid Fahrweid Winterthur-Töss

Turkey

SIMKO Ticaret ve Sanayi A.S. Findikli Istanbul Adana Alsancak-Izmir Ayazag-Istanbul Beşiktaş-Istanbul Bursa Bursa Cerkezköy-Tekikdag Kartal-Istanbul Kavaklidere-Ankara Mecidiyeköy-Istanbul Mudanya Comour

Ukraine

Samsun

Representative of Siemens AG Kiew Charkiw Odessa Wischgorod

Yugoslavia

Siemens d.o.o. Beograd

Siemens d.d. Zagreb

Siemens s.r.o. Prague Brno Děčín Stříbro

Alborg Brønshøj Esbjerg Hedensted

Siemens Ltd. Dublin

Appendix

Africa

Algeria Siemens Bureau d'Alger Hvdra

Angola

Escritório de Representação da Siemens em Angola Luanda

Botswana Siemens (Pty) Ltd Gaborone Iwaneng

Congo SOFAMATEL S.P.R.L Kinshasa

Côte d'Ivoire Siemens AG

Abidjan

Egypt Siemens Limited Cairo-Mohandessin Smouha Alexandria

Centech Cairo-Zamalek

Ethiopia

Siemens (Pvt) Addis Abeba

Ghana Impromex ACCRA Accra

Guinea

André & Cie. S. A Lausanne

Kenya

Siemens Communications Ltd Nairohi Lesotho

Range Telecommunication Systems (Pty) Ltd Maseru

Libya , Siemens A. G. Branch Libya **Tripoli**

Malawi

Ecolectric Ltd. Blantyre

Mauritius

Ireland Blyth Ltd Port Louis

Morocco

SETEL Société Electrotechnique et de Télécommunication S. A Casablanca

Mosambique Siemens Limitada Maputo

Namibia

Siemens (Pty.) Ltd Windhoek

Nigeria Siemens Limited

Lagos Abuja Kaduna

Republic of South Africa Siemens Ltd. Halfway House Centurion Isando Pretoria Springs Woodmead

Sudan National Electrica Commercial Co. Khartoum

Swaziland

Siemens (Pty) Ltd Matsapha

Tansania Tanzania Electrical Services Ltd. Dar-es-Salaam

Tunesia Siemens Bureau de Liaison Tunis

Zambia Siemens (Z) Ltd. **Kitwe** Lusaka

Zimbabwe

Siemens (Pvt.) Ltd. Harare Alexandra Park

America

Argentina Siemens S A Buenos Aires San Martin Bahia Blanca Córdoba Las Heras Mar del Plata Rosario

Boulogne sur Mer Bolivia

Sociedad Comercial é Industrial Hansa Ltda. La Paz

Brazil

Siemens Ltda. Sao Paulo Belo Horizonte Beio Horizon Brasilia Campinas Curitiba Florianópolis Fortaleza Fravatai Jaboatao dos Guararapes

Jundiai Manaus Pôrto Alegre Ribeirao Preto Rio de Janeiro Salto Salvador S. Bernado do Campo Vila Sao Joao

Canada Siemens Canada Limited Mississanga Ajax Brampton Burnaby Calgary Cambridge Clatham Dartmouth Drummond Dartmouth Drummondville Edmonton Kanata London Moncton Montreal Mount Pearl Ottawa Ottawa Pointe Claire Saçkatoon Sherbrooke Tilbury Vanier Windsor Winnipeg

Chile

Siemens S.A. Santiago de Chile

Colombia Siemens S. A

Santafé de Bogotá Barranquilla Cali-Occidente Medellin

Costa Rica Siemens S. A. San José

Cuba

EUMEDA Representación Consultiva de Siemens Electromedicina Ciudad de la Habana

Curaçao SANTRACO N. V. Willemstad

Dominican Republic

Electromédica S. A. Santo Domingo

Ecuador

Siemens S. A. Quito Guayaquil

El Salvador Siemens S. A. San Salvador

Guatemala

Siemens S. A. Ciudad de Guatemala

Honduras Representaciones Electroindustriales S. de R.L. San Pedro Sula Tegucigalpa

Jamaica Meditron Ltd. Kingston

Martinique

Périé Medical Fort-de-France

Mexico Siemens S A de CV México, D.F. Mexico, D.F. Aguascalientes Apodaca Chihuahua Cd. Juárez Culiacán Gómez Palacio Hermosillo León Mérida Puebla San Juan Cuautlancingo Tijuana Tlajomulco de Zuniga Veracruz Villa Corregidora Nicaragua Siemens S. A. Managua

Panama Siemens S. A. Panama

Paraguay

Rieder & Cia. S. A. C. I. Asunción

Peru Siemens S. A. Lima

Trinidad and Tobago Biomedical Technologies Ltd. St. Augustin

United States of America

Siemens Corporation New York Allentown Alpharetta Arlington Atlanta Auburg Hillo Auburn Hills Boca Raton Boca Katon Bridgewater Brooklyn Park Camarillo Charlotte Columbus Concord Cupertino Danvers Danvers Duluth Fountain Inn Gainsville Hickory Hoffman Estates Issaguah Iselin Johnson City Lake Oswego Lima Milwaukee Newport News Norcross Oklahoma City Palo Alto Piscataway Princeton Richardson Richland Sacramento Santa Clara Santa Clara Santa Fe Springs San Jose Sunnyvale Totawa Washington Wendell

Uruguay Conatel S.A. Montevideo

Venezuela

Siemens S. A. Caracas Barcelona Maracaibo Perto Ordaz Valencia

Appendix

Asia

Bahrain

Siemens AG Service Center Transitec Gulf Manama

Bangladesh Siemens Bangladesh Ltd.

Dhaka Khulna

Brunei

AMS Technologies Sdn Bhd Negara Brunei Darussalam

India

Siemens Ltd Ahmedabad Ahmedabad Bangalore Calcutta Chandigarh Chennai Coimbatore Gurgaon Kaloor Kaloor Mumbai Nashik Navi Mumbai New Dehli Pune Secunderabad Vadodara

Indonesia

Representative Office Siemens AG Batam Cilegon Surabaya

Iraq

Siemens AG Baghdad Iran

Siemens S.S.K Teheran

Israel

Siemens Ltd. Tel Aviv Holon Herzeliya Ramat Hakhaiyal Siemens K. K Tokyo Kobe Fukuoka Hiroshima Ishikawa Kanagawa Nagoya Osaka

Sapporo Sendai

Japan

Yokohama Jordan Siemens AG Jordan Branch Shmeisani-Ammar Amman

Kazakhstan

Representative of Siemens AG Almaty

Kirghizstan Representative of Siemens AG Bischkek

Korea (Republic) Siemens Ltd.

Seoul Changwon Kyungki-Do

Kuwait National & German Electrical and Electronic Services Co. (NGEECO) Kuwait

Lebanon

Siemens AG Lebanon Branch Beyrouth

Malaysia Siemens Electrical Engineering Sdn. Bhd. Petaling Jaya Kuala Lumpur Kajang

Myanmar

Siemens Ltd. Yangon

Nepal

Amatya Enterprises (Pvt.) Ltd. Kathmandu

Oman Siemens AG Muscat Branch Ruwi Muscat

Pakistan Siemens Pakistan Engineering Co. Ltd. Karachi Faisalabad Islamabad Lahore Peshawar Quetta

People's Republic of China

Siemens Ltd., China Beijing Changchun Chengdu Chongqing Chuzhou Chuzhou Dalian Fuqing Fuzhou Guangzhou Hangzhou Jilin Jinan Nanhai Nanhai Nanjing Panyu Rizhao Shanghai Shenyang Shenzhen Suzhou Suzhou Tianjin Wuhan Wuxi Xi'an Xiaogan City Zibo

Philippines

Siemens Inc. Makati City Pasig City Cebu Davao City

Qatar

Arabian Construction Engineering Company **Doha**

Saudi Arabia

Arabia Electric Ltd. (Equipement) Jeddah Al Khobar Riyadh

Singapore

Siemens Advanced Engineering (Pte.) Ltd. Singapore

Sri Lanka

Dimo Limited Colombo

Syria

Siemens AG Damascus Branch Dasmascus

Taiwan Siemens Ltd. Taipei Taichung Kaohsiung Taoyuan Hsien

Thailand

Siemens Limited Bangkok Rayong

Turkmenistan Representative of Siemens AG Aschgabad

Uzbekistan

Representative of Siemens AG Taschkent

United Arab Emirates

Siemens Resident Engineers Dubai Abu Dhabi

Vietnam

Siemens AG Representation Hanoi Ho Chi Minh City

Yemen Tihama Tractors & Engineering Co. Ltd. Sanaa Aden

Australia

Siemens Ltd. Siemens Ltc Melbourne Adelaide Bayswater Brisbane Gladesville Milton Milton Pennant Hills Perth Silverwater St. Leonards Sydney

New Zealand

Siemens (NZ) Limited Auckland Wellington

Appendix

Information and ordering on the Internet and on <u>CD-ROM</u>

A&D in the WWW

Product selection with the interactive catalogs

Detailed information about the product range to be used and the services that are available is essential at the planning and project engineering phases of plant automation projects. It is a fact that this information has to be as up-todate as possible.

For this reason, the Siemens Group Automation and Drives (A&D) provides a comprehensive information service on the World Wide Web that makes it easy for our customers to access all the necessary information.

You will find everything you need to know about products, systems and service contracts at:

http://www.siemens.de/ automation

Providing comprehensive information and user-friendly interactive functions: The interactive catalogs, CA 01 and ET 01, featuring over 80000 products, provide a comprehensive overview of the Siemens Automation and Drives product spectrum.

You will find everything that you need to fulfill any task in the fields of automation, controlgear, electrical installation and drives. All the information is embedded in a user-interface that supports easy, intuitive operation. When you have selected you products, you can submit your order by fax or via an online link at the press of a button. You will find Information on the interactive catalogs on the Internet at:

http://www.siemens.de/ automation/ca01

or on CD-ROM: Automation and Drives, CA 01 Order No.: E86060-D4001-A100-B5 Installation Systems, ET 01 Order No.: E86060-D8200-A107-A2

ſ

Easy shopping with the Siemens Mall

the second second

The Siemens Mall is the virtual department store of Siemens AG on the Internet. You can access a gigantic product spectrum that is presented clearly and informatively in electronic catalogs.

Data transfer via EDIFACT allows the complete ordering process, from selection to ordering and order tracking, to take place online via the Internet. Numerous functions are available to you which make the job easier.

Powerful search functions make it easy to find the required products and check their availability immediately. Individual customer discounts and quotations are available online as well as tracking and tracing of your order.

You will find the Siemens Mall on the Internet at:

http://www.siemens.de/ automation/mall

SIMOREG K Chassis Converters 6RA22 Appendix

Customer support

Automation & Drives customer support

Whether you need a service specialist or a spare part, advice from a product expert or just an answer to a question: Contact the Service & Support Team – The team for your success.

You need help and are not

sure who to contact. We will

auickly.

ensure that you get assistance

Helpline for service and support

Online support

Field service

Our online support provides fast, effective assistance – round-the-clock, worldwide

and in five different languages. Online support offers a wide

range of technical information:

Your plant is installed and you

need help quickly on site. We

have the specialists with the

necessary expertise near you

wherever you are in the world.

Free manualsHelpful programs and

• FAQs, Tips and Tricks,

downloads and news

German.

software products – payment accepted with the SIMATIC Card

The helplines guarantee that

the right local specialist pro-

vides you with technical support. The helpline, for example

in Germany, provides assistance 365 days a year roundthe-clock in English and

Our dense service network means that you will receive attention quickly and reliably.

In Germany, you can request an expert 365 days a year round-the-clock.

Tel.: 0180 50 50 444 1)

Naturally we also offer service contracts tailored to your individual needs. Please contact your local Siemens representative for further information.

Tel.: +49 (0)180 50 50 111

http://www.siemens.de/

automation/service&support

Spare parts and repairs

Our worldwide network of regional spare parts warehouses and repair shops responds quickly and reliably with the latest in logistics. In the event of queries concerning repairs or spare parts, please call the following number (in Germany):

Tel.: 0180 50 50 446¹⁾

Out of office hours and at the weekend, you can contact our emergency spare parts service under the following number.

Technical support

Technical support with using our products, systems and solutions in the field of automation and drives is available in English and German. Capable, trained and experienced specialists also offer Teleservice and Video Conferencing for particularly difficult problems

FreeContact – the route to technical support free of charge

• European and African time zones

Tel.: +49 (0)180 50 50 222 Fax: +49 (0)180 50 50 223 E-mail:

techsupport@ad.siemens.de Mo.-Fr.: 7:00 to 17:00 (CET)

USA time zones

24h hotline toll-free: +1 (0)800 241-4453

Tel.: +1 (0)770 740-3505 Fax: +1 (0)770 740-3396 E-mail: drives.support@ sea.siemens.com Mo.-Fr.: 8:00 to 20:00 (local time: Eastern Time) Asian/Australian time zones

Tel.: +65 (0)740-7000 Fax: +65 (0)740-7001 E-mail: drives.support@ sea.siemens.com.sg Mo.-Fr.: 8:30 to 17:30 (local time: Singapore)

1) Germany only, for local "Länder" telephone numbers visit: http://www.siemens.de/ automation/service&support

SIMOREG K Chassis Converters 6RA22 Appendix

Customer support

Knowledge Base on CD-ROM

For working environments without an online connection to the Internet, an extract of the information provided free of charge is available on CD-ROM (Service & Support Knowledge Base). This CD-ROM contains all the upto-date product information (FAQs, downloads, Tips and Tricks, news) as well as general information about service and technical support. You will also find on the CD-ROM a complete text search function and our Knowledge Manager which will help you to locate solutions. The CD-ROM is updated every 4 months.

As with our online service on the Internet, the CD Service & Support Knowledge Base is available complete in 5 languages (English, German, French, Italian and Spanish). You can order the CD **Service** und Support Knowledge Base from your Siemens contact partner. Order No. 6ZB5310-0EP30-0BA1 Order over the Internet (using the SIMATIC Card or a credit card) at:

http://www.siemens.de/ automation/service&support under "Shop".

SIMATIC Card

You can use the SIMATIC Card to purchase service credit.

This credit can then be used to access the technical support services that are subject to charge (FastContact, Service-Line) or to download software products and application examples from the Internet.

The SIMATIC Card operates on the same principle as a telephone card. You can access your credit using the SIMATIC Card number and the SIMATIC Card PIN (both numbers are on the rear of your SIMATIC Card or will be supplied by e-mail when you purchase over the Internet).

On the Internet you can also view the <u>account for your</u> <u>SIMATIC Card</u> at:

http://www.siemens.de/ automation/simatic-card The **SIMATIC Card** can be ordered as follows:

From your Siemens contact partner

SIMATIC Card

Units	Order No.
200	6ES7 997-0AA00-0XA0
500	6ES7 997-0AB00-0XA0
1000	6ES7 997-0AC00-0XA0
Validity chase	2 years from date of pur-

On the Internet in conjunction with a credit card, the SIMATIC Card can be used immediately:

http://www.siemens.de/ automation/simatic-card

Tel.: +49 (0)911 895 7777 Fax: +49 (0)911 895 7001

Appendix

Conditions of sale and delivery, export regulations

In Germany

Subject to the <u>General Conditions of Sale</u> as well as the <u>General</u> <u>Conditions of Supply and Delivery for Products and Services of the</u> <u>Electrical and Electronics Industry</u>.

For Export

Subject to the <u>General Conditions of Supply and Delivery for Products and Services of the Electrical and Electronics Industry</u> and to any other conditions agreed upon with the recipients of catalogs/ price lists.

Software products are subject to the <u>General Licence Conditions for</u> <u>Software Products for Automation and Drives.</u>

Prices are listed in $\ \in$ (Euro) ex delivery point, excluding packaging.

Turnover tax (VAT) is not included in the prices. It will be added according to legal provisions at the applicable rate.

We reserve the right to adjust prices and shall charge the prices applying on the date of delivery.

Notes

All dimensions in this catalog/price list are in mm. The illustrations are for reference only.

We reserve the right to make changes, in particular to the specified values, dimensions and weights, unless specified otherwise on the individual pages of this catalog/price list.

Export regulations

The products listed in this catalog/price list may be subject to European/German and/or US export provisions.

Any export requiring approval is therefore subject to authorization by the relevant authorities.

For the products listed in this catalog/price list, the following export regulations must be adhered to in accordance with currently valid regulations.

- AL Number of the German export list
 - Products with a code other than "N" must be approved for export.

The export codes of the respective data medium must also be adhered to for software products.

Goods labeled with "<u>AL not equal to N</u>" are subject to European or German export authorization when being exported out of the EU.

ECCN Number of US export list (Export <u>C</u>ontrol <u>C</u>lassification <u>N</u>umber)

> Products with a code other than "N" require approval for reexport to certain countries.

> The export codes of the respective data medium must also be adhered to for software products.

Goods labeled with " $\underline{\mathsf{ECCN}}$ not equal to $\underline{\mathsf{N}}$ " are subject to US reexport authorization.

Even without a label, or with label "AL: N" or "ECCN: N", authorization may be required due to the final whereabouts and purpose for which the goods are to be used.

The AL and ECCN export codes specified in our confirmations, delivery notes and invoices apply.

Subject to change without prior notice.

Responsible for

Technical Contents: Siemens AG, A&D LD M PM, Nuremberg General Editing: Siemens AG, A&D PT 5, Erlangen

Order No. E86060-K5121-A121-A1-7600 Printed in the Federal Republic of Germany KG K 1001 3.0 SV/BD 60 En/122375

Siemens AG Automation & Drives Group Large Drives Division PO Box 4743, 90025 Nuremberg Germany http://www.siemens.de/automation/ld

A

Catalogs of the Automation and Drives Group (A&D) Further information can be obtained from our branch offices listed in the appendix of this catalog

	Automation and Drives	
	Interactive catalogs on CD-BOM	
	Components for Automation & Drives	CA 01
	Installation Systems	ET 01
_		
	Analysis Systems	
	Gas Analysis Equipment	PA 10
	Components for Sample Preparation	PA 11
	Liquid Analysis	PA 20
	Drive Systems	
	Variable-Speed Drives	
	DC Motors	DA 12
	SIMOREG Chassis Converters	DA 21
	SIMOREG Static Converter Cabinets	DA 22
	SIMOVERT PM Modular Converter Systems	DA 45
	SIEMOSYN Motors	DA 48
	MICROMASTER 420/440 Converters	DA 51.2
	COMBIMASTER 411/MICROMASTER 411	DA 51.3
	SIMOVERT A Current-Source DC Link Converters	DA 62
	SIMOVERT MV Medium-Voltage Drives	DA 63
	MICROMASTER, MIDIMASTER	DA 64
	Voltage-Source DC Link Converters	
	SIMOVERT MASTERDRIVES	DA 65
	Voltage-Source DC Link Converters	
	SIMOVERT P Voltage-Source DC Link Converters	DA 66
	SIVOLI AC and Three-Phase Power Controllers	DA 68
	SITOR Thyristor Assemblies	DA 91
	SITUR Units and Static Converter Cabinets	DA 92
	Chokes	DA 93
	SITOR Semiconductor Protection Fuses	DA 94
	SIMADYN C Control System	DA 95
		DA 97
	SIMADYN D Digital Control System	
	Drive Systems for Machine Tools SIMODBIVE	NC 60
	AC Main Spindle Motors 1EE1 1PH2 1PH3 1PH4	110 00
	AC Servomotors 1EK6 1ET5 1ET6	
	Linear Motors 1FN1, 1FN3	
	Converter System SIMODRIVE 611	
	Converter Systems SIMODRIVE POSMO A/CD/CA/SI	
	Low-Voltage Three-Phase Motors	
	Project Manual	M 10
	 Squirrel-Cage Motors 	M 11
	High-Voltage Three-Phase Motors	M 2
	Starters and Resistor Units	AW 1
	Drive and Control Components for Lifting Gear	HE 1
	Automation Systems for Machine Tools	
	Complete Catalog SINI IMERIK & SIMODRIVE	NC 60
	Cables, Connectors and System Components	NC Z
_	, 	
	SIMATIC Industrial Automation Systems	
	SIMATIC PCS Process Control System	ST 45
	SIMATIC S5/PC/505 Automation Systems	ST 50
	Components for Totally Integrated Automation	ST 70
	SIMATIC PCS 7 Process Control System	ST PCS 7
	Industrial Communication and Field Devices	IK PI
	Installation Systems	
	Characteristic Curves of LV Euses	
	(see CD-ROM ET 01)	
	N System	12.1
	STAB Wall-Mounting Distribution Boards	I 2.31
	SIKUS Floor-Mounting Distribution Boards	12.32
	SIPRO Meter Cabinet Catalogs	I 2.33/01
		to I 2.33/12
	Busbar System 8PU	12.36
	DELTA Programs	12.4

SITRAIN Information and Training	
Courses and Computer Based Training	ITC
SIMATIC HMI Human-Machine Interface Products and Systems	ST 80
Systems Engineering	
Power Supplies SITOP power	KT 10.1
MOBY identification systems	KT 10.2 KT 21
Industrial Microcomputers SICOMP	KT 51
Industrial Microcomputers SICOMP SMP	KT 52
Printers and Monitors Cabinet Packaging System for SIMATIC PCS 7	KT 61 KT 71
Controlgear, Switchgear and Systems	
Low-Voltage Controlgear, Switchgear and Systems	NS K
Communication-Capable Controlgear, Switchgear	
SIGUARD Safety Systems, Control and	
Signaling Devices, Switchgear for Power Distribution,	
Transformers and Power Supplies,	
BERO - Sensors for Automation	NS BERO
Supplementary Catalog	NS E
Supplementary Range, Superseded Devices, Spare	
Products and Systems for Low-Voltage Power	NS PS
SENTRON WL	NS WL
SICUBE System Cabinets 8MC and 8MF	NV
Power Supplies & Components for Drives	PD
(Catalog)	
TELEPERM M Process Control System	
AS 235, AS 235H and AS 235K Automation Systems	PLT 111
AS 388/TM and AS 488/TM Automation Systems	PLI 112 PLT 122
Operating and Monitoring with WinCC/TM	PLT 123
CS 275 bus system	PLT 130
Process Engineering	
Field Instruments for Process Automation	FI 01
Differential Pressure, Flow, Level and Temperature,	
Positioners and Liquid Meters	
SIWAREX Weighing Systems	KT 30
Analog Indicators and Limit-Value Monitors, Standard Elush-Mounting Instruments	MP 12 B
Digital and Bargraph Indicators.	MP 12 D
Standard Flush-Mounting Instruments	
Process Recorders and Accessories	MP 20
SIPART, Controllers and Software	MP 31
MASTERGUARD Uninterruptable Power Supplies	USV
Vacuum Pumps/Compressors	
Oil-Free Vacuum Pumps, Compressors,	PV
Radial-Flow Fans	
SIPOS Electrical Actuators	140.05
Electrical Rotary, Linear and Part-Turn Actuators	MP 35 MP 35 1/ 2
	IVII UU. 1/.2
System Solutions for Industry	
Combined Catalog: Applications and Products for	SL 01
With SIMATIC S7	SL 10
With SIMATIC S5	ST 58

Siemens AG Automation and Drives Group Large Drives Division P.O. Box 47 43, 90025 Nuremberg Germany http://www.siemens.de/automation/Id

Order No.: E86060-K5121-A121-A1-7600